AI_AND_SCIENCE Telegram 43
🦠 Идентификация бактерий: взаимодействие машинного обучения и масс-спектрометрии

Новая модель достигает более 99% точности в определении видов бактерий

Ученые достигли значительного прогресса в области оценки биологических угроз, используя алгоритмы машинного обучения для классификации бактерий с исключительной точностью. Применение подхода с двумерной тандемной масс-спектрометрией (2D MS/MS) предоставляет быстрое и надежное решение, которое может преобразить области микробиологии и контроля инфекционных заболеваний.

🧫 Исследователи успешно классифицировали различные виды бактерий, анализируя их липидные профили с помощью модифицированного масс-спектрометра, достигнув беспрецедентной точности классификации более 99%. Этот метод выделяется своей скоростью, простотой и минимальными требованиями к подготовке образцов. "Наша работа не только демонстрирует синергию между аналитической химией и искусственным интеллектом, но и открывает новые пути для обнаружения биоугроз и эпидемиологического надзора," отметил ведущий исследователь.

💫 В исследовании использовался модифицированный линейный квадрупольный масс-спектрометр с ионной ловушкой, усовершенствованный возможностями 2D MS/MS. Виды бактерий определяли на уровне липидов с помощью моделей машинного обучения, включая метод случайного леса, метод k-ближайших соседей, многослойный персептрон и сверточные нейронные сети. Исследовательская группа изучает применение этой технологии в портативных устройствах для полевого использования, что еще больше повысит ее практическую ценность в реальных условиях мониторинга окружающей среды.

Это исследование связывает аналитическую химию и вычислительную биологию, предлагая быстрый, точный и доступный метод для классификации бактерий. В перспективе он поможет своевременно выявить и нейтрализовать биологические угрозы.

📌 Публикация: Gonzalez, L. E. et al. Machine-Learning Classification of Bacteria Using Two-Dimensional Tandem Mass Spectrometry. Anal. Chem. 2023, 95, 17082-17088.
🔥5👍3🤔2



tgoop.com/AI_and_science/43
Create:
Last Update:

🦠 Идентификация бактерий: взаимодействие машинного обучения и масс-спектрометрии

Новая модель достигает более 99% точности в определении видов бактерий

Ученые достигли значительного прогресса в области оценки биологических угроз, используя алгоритмы машинного обучения для классификации бактерий с исключительной точностью. Применение подхода с двумерной тандемной масс-спектрометрией (2D MS/MS) предоставляет быстрое и надежное решение, которое может преобразить области микробиологии и контроля инфекционных заболеваний.

🧫 Исследователи успешно классифицировали различные виды бактерий, анализируя их липидные профили с помощью модифицированного масс-спектрометра, достигнув беспрецедентной точности классификации более 99%. Этот метод выделяется своей скоростью, простотой и минимальными требованиями к подготовке образцов. "Наша работа не только демонстрирует синергию между аналитической химией и искусственным интеллектом, но и открывает новые пути для обнаружения биоугроз и эпидемиологического надзора," отметил ведущий исследователь.

💫 В исследовании использовался модифицированный линейный квадрупольный масс-спектрометр с ионной ловушкой, усовершенствованный возможностями 2D MS/MS. Виды бактерий определяли на уровне липидов с помощью моделей машинного обучения, включая метод случайного леса, метод k-ближайших соседей, многослойный персептрон и сверточные нейронные сети. Исследовательская группа изучает применение этой технологии в портативных устройствах для полевого использования, что еще больше повысит ее практическую ценность в реальных условиях мониторинга окружающей среды.

Это исследование связывает аналитическую химию и вычислительную биологию, предлагая быстрый, точный и доступный метод для классификации бактерий. В перспективе он поможет своевременно выявить и нейтрализовать биологические угрозы.

📌 Публикация: Gonzalez, L. E. et al. Machine-Learning Classification of Bacteria Using Two-Dimensional Tandem Mass Spectrometry. Anal. Chem. 2023, 95, 17082-17088.

BY ИИХ




Share with your friend now:
tgoop.com/AI_and_science/43

View MORE
Open in Telegram


Telegram News

Date: |

The SUCK Channel on Telegram, with a message saying some content has been removed by the police. Photo: Telegram screenshot. 3How to create a Telegram channel? Private channels are only accessible to subscribers and don’t appear in public searches. To join a private channel, you need to receive a link from the owner (administrator). A private channel is an excellent solution for companies and teams. You can also use this type of channel to write down personal notes, reflections, etc. By the way, you can make your private channel public at any moment. A few years ago, you had to use a special bot to run a poll on Telegram. Now you can easily do that yourself in two clicks. Hit the Menu icon and select “Create Poll.” Write your question and add up to 10 options. Running polls is a powerful strategy for getting feedback from your audience. If you’re considering the possibility of modifying your channel in any way, be sure to ask your subscribers’ opinions first. Add up to 50 administrators
from us


Telegram ИИХ
FROM American