AI_AND_SCIENCE Telegram 45
🌐 Идентификация происхождения кофе с помощью машинного обучения

Комбинация масс-спектрометрии и глубокого обучения позволяет классифицировать кофейные зерна на основе анализа аромата кофе

Разработан быстрый, недеструктивный и производительный метод для установления происхождения кофейного сырья. Предложенный подход с использованием масс-спектрометрии летучих соединений кофе и алгоритмов машинного обучения обеспечивает работу в автоматическом режиме и не требует предварительной пробоподготовки, позволяя неспециалистам проводить оценку подлинности продукции в режиме реального времени.

Доступная кофейная продукция обладает различными ароматом, вкусом, географическим происхождением и ценой. Существующие методы анализа кофе включают длительную трудоемкую пробоподготовку в виде экстракции активных компонентов с ограниченной эффективность обнаружения.

В исследовании предложена методика для классификации кофе с помощью масс-спектрометрии с ионизацией коронного разряда газового аналита – летучих компонентов кофейных зерен. Для обеспечения высокой производительности было разработано устройство отбора проб с воздушной завесой для предотвращения смешивания летучих веществ разных образцов.

📊 Полученные аналитические данные обработаны специальным алгоритмом глубокого обучения для автоматической идентификации происхождения кофе. Алгоритм не только выделяет значимые пики в спектре, сокращая вдвое вводные данные, но также снижает интерференцию и «шумы». Достигнута точность классификации в 99,78% на примере 6 сортов кофе с производительностью 1 образец в секунду.

Простой в работе, быстрый и высокоточный метод, предложенный в исследовании, поможет обеспечить подлинность продукции и предотвратить фальсификацию кофе.

📌 Публикация: Yang, H. et al. Rapid classification of coffee origin by combining mass spectrometry analysis of coffee aroma with deep learning. Food Chem. 2024, 446, 138811.
👍3🔥211



tgoop.com/AI_and_science/45
Create:
Last Update:

🌐 Идентификация происхождения кофе с помощью машинного обучения

Комбинация масс-спектрометрии и глубокого обучения позволяет классифицировать кофейные зерна на основе анализа аромата кофе

Разработан быстрый, недеструктивный и производительный метод для установления происхождения кофейного сырья. Предложенный подход с использованием масс-спектрометрии летучих соединений кофе и алгоритмов машинного обучения обеспечивает работу в автоматическом режиме и не требует предварительной пробоподготовки, позволяя неспециалистам проводить оценку подлинности продукции в режиме реального времени.

Доступная кофейная продукция обладает различными ароматом, вкусом, географическим происхождением и ценой. Существующие методы анализа кофе включают длительную трудоемкую пробоподготовку в виде экстракции активных компонентов с ограниченной эффективность обнаружения.

В исследовании предложена методика для классификации кофе с помощью масс-спектрометрии с ионизацией коронного разряда газового аналита – летучих компонентов кофейных зерен. Для обеспечения высокой производительности было разработано устройство отбора проб с воздушной завесой для предотвращения смешивания летучих веществ разных образцов.

📊 Полученные аналитические данные обработаны специальным алгоритмом глубокого обучения для автоматической идентификации происхождения кофе. Алгоритм не только выделяет значимые пики в спектре, сокращая вдвое вводные данные, но также снижает интерференцию и «шумы». Достигнута точность классификации в 99,78% на примере 6 сортов кофе с производительностью 1 образец в секунду.

Простой в работе, быстрый и высокоточный метод, предложенный в исследовании, поможет обеспечить подлинность продукции и предотвратить фальсификацию кофе.

📌 Публикация: Yang, H. et al. Rapid classification of coffee origin by combining mass spectrometry analysis of coffee aroma with deep learning. Food Chem. 2024, 446, 138811.

BY ИИХ


Share with your friend now:
tgoop.com/AI_and_science/45

View MORE
Open in Telegram


Telegram News

Date: |

Commenting about the court's concerns about the spread of false information related to the elections, Minister Fachin noted Brazil is "facing circumstances that could put Brazil's democracy at risk." During the meeting, the information technology secretary at the TSE, Julio Valente, put forward a list of requests the court believes will disinformation. A few years ago, you had to use a special bot to run a poll on Telegram. Now you can easily do that yourself in two clicks. Hit the Menu icon and select “Create Poll.” Write your question and add up to 10 options. Running polls is a powerful strategy for getting feedback from your audience. If you’re considering the possibility of modifying your channel in any way, be sure to ask your subscribers’ opinions first. To edit your name or bio, click the Menu icon and select “Manage Channel.” Telegram users themselves will be able to flag and report potentially false content. So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms.
from us


Telegram ИИХ
FROM American