tgoop.com/AI_and_science/45
Last Update:
🌐 Идентификация происхождения кофе с помощью машинного обучения
Комбинация масс-спектрометрии и глубокого обучения позволяет классифицировать кофейные зерна на основе анализа аромата кофе
☕ Разработан быстрый, недеструктивный и производительный метод для установления происхождения кофейного сырья. Предложенный подход с использованием масс-спектрометрии летучих соединений кофе и алгоритмов машинного обучения обеспечивает работу в автоматическом режиме и не требует предварительной пробоподготовки, позволяя неспециалистам проводить оценку подлинности продукции в режиме реального времени.
Доступная кофейная продукция обладает различными ароматом, вкусом, географическим происхождением и ценой. Существующие методы анализа кофе включают длительную трудоемкую пробоподготовку в виде экстракции активных компонентов с ограниченной эффективность обнаружения.
В исследовании предложена методика для классификации кофе с помощью масс-спектрометрии с ионизацией коронного разряда газового аналита – летучих компонентов кофейных зерен. Для обеспечения высокой производительности было разработано устройство отбора проб с воздушной завесой для предотвращения смешивания летучих веществ разных образцов.
📊 Полученные аналитические данные обработаны специальным алгоритмом глубокого обучения для автоматической идентификации происхождения кофе. Алгоритм не только выделяет значимые пики в спектре, сокращая вдвое вводные данные, но также снижает интерференцию и «шумы». Достигнута точность классификации в 99,78% на примере 6 сортов кофе с производительностью 1 образец в секунду.
Простой в работе, быстрый и высокоточный метод, предложенный в исследовании, поможет обеспечить подлинность продукции и предотвратить фальсификацию кофе.
📌 Публикация: Yang, H. et al. Rapid classification of coffee origin by combining mass spectrometry analysis of coffee aroma with deep learning. Food Chem. 2024, 446, 138811.
BY ИИХ
Share with your friend now:
tgoop.com/AI_and_science/45