BDATASCIENCEM Telegram 2686
Зачем нам вся эта математика бахнем ML все и так заработает. Или нет?
Сегодня разберем следующую 'оптимизационную' задачу. Мы хотим найти максимум ф-ии f на некотором ограниченном домене, при это f отделима от нуля на этом домене и монотонна. В чем же сложность, если f - монотонная ф-ия? В том, что есть дополнительное условие - xf(x) <= b. Существуют задачи в индустрии, на которых завязано много денег и которые формулируются подобным образом. Фактически, нужно решить уравнение xf(x)=b.
Дополнительная проблема в том, что мы не знаем вид функции f, и даже не можем взять ее градиент. Все что мы можем - измерить значение f в некоторой точке. В оптимизации это называется оракулом нулевого порядка. Соответственно, оракул 1ого порядка - знаем значение функции и ее градиента, второго порядка - то же что и ранее + гессиан, и так далее.
Вспомним метод простой итерации. Как он формулируется? Нужно найти сжимающее отображение, которое в итоге будет сходиться к нужной точке. Однако алгоритмически подобрать сжимающее отображение не очень возможно. К счастью, тут его придумать просто.
Например, отображение g(x) = a* x + (1 - a) * b/f(x). Идейно понятно, почему оно сходится к решению - если x слишком большой, тогда b/f(x) < x, и мы его уменьшим, иначе увеличим. На картинке приведено доказательство, почему для этого отображения наше решение - неподвижная точка.
Почему это круто? Ну... Метод сходится геометрически, на практике за 4-5 итераций, что важно, если измерить значение функции f сложно. Подобную тактику можно использовать для подбора гиперпараметров каких-то моделей, если мы идейно представляем, как устроена зависимость лосса от конкретно этого гиперпараметра. Также подобный метод никак не привязан ко времени, и адаптируется, если ф-ия f между итерациями меняется, но не сильно.
Вот так простая математика позволяет зарабатывать деньги. Формальное доказательство что это сжимающее отображение приводить не буду ибо оно немного громоздкое и также следует из свойств метода простой итерации.
Также легко обобщается на стохастический случай, можете попробовать в комментариях :)
🔥378🥰4🤡2🤮1



tgoop.com/BDataScienceM/2686
Create:
Last Update:

Зачем нам вся эта математика бахнем ML все и так заработает. Или нет?
Сегодня разберем следующую 'оптимизационную' задачу. Мы хотим найти максимум ф-ии f на некотором ограниченном домене, при это f отделима от нуля на этом домене и монотонна. В чем же сложность, если f - монотонная ф-ия? В том, что есть дополнительное условие - xf(x) <= b. Существуют задачи в индустрии, на которых завязано много денег и которые формулируются подобным образом. Фактически, нужно решить уравнение xf(x)=b.
Дополнительная проблема в том, что мы не знаем вид функции f, и даже не можем взять ее градиент. Все что мы можем - измерить значение f в некоторой точке. В оптимизации это называется оракулом нулевого порядка. Соответственно, оракул 1ого порядка - знаем значение функции и ее градиента, второго порядка - то же что и ранее + гессиан, и так далее.
Вспомним метод простой итерации. Как он формулируется? Нужно найти сжимающее отображение, которое в итоге будет сходиться к нужной точке. Однако алгоритмически подобрать сжимающее отображение не очень возможно. К счастью, тут его придумать просто.
Например, отображение g(x) = a* x + (1 - a) * b/f(x). Идейно понятно, почему оно сходится к решению - если x слишком большой, тогда b/f(x) < x, и мы его уменьшим, иначе увеличим. На картинке приведено доказательство, почему для этого отображения наше решение - неподвижная точка.
Почему это круто? Ну... Метод сходится геометрически, на практике за 4-5 итераций, что важно, если измерить значение функции f сложно. Подобную тактику можно использовать для подбора гиперпараметров каких-то моделей, если мы идейно представляем, как устроена зависимость лосса от конкретно этого гиперпараметра. Также подобный метод никак не привязан ко времени, и адаптируется, если ф-ия f между итерациями меняется, но не сильно.
Вот так простая математика позволяет зарабатывать деньги. Формальное доказательство что это сжимающее отображение приводить не буду ибо оно немного громоздкое и также следует из свойств метода простой итерации.
Также легко обобщается на стохастический случай, можете попробовать в комментариях :)

BY ML-легушька




Share with your friend now:
tgoop.com/BDataScienceM/2686

View MORE
Open in Telegram


Telegram News

Date: |

On Tuesday, some local media outlets included Sing Tao Daily cited sources as saying the Hong Kong government was considering restricting access to Telegram. Privacy Commissioner for Personal Data Ada Chung told to the Legislative Council on Monday that government officials, police and lawmakers remain the targets of “doxxing” despite a privacy law amendment last year that criminalised the malicious disclosure of personal information. There have been several contributions to the group with members posting voice notes of screaming, yelling, groaning, and wailing in different rhythms and pitches. Calling out the “degenerate” community or the crypto obsessives that engage in high-risk trading, Co-founder of NFT renting protocol Rentable World emiliano.eth shared this group on his Twitter. He wrote: “hey degen, are you stressed? Just let it out all out. Voice only tg channel for screaming”. But a Telegram statement also said: "Any requests related to political censorship or limiting human rights such as the rights to free speech or assembly are not and will not be considered." For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data.
from us


Telegram ML-легушька
FROM American