tgoop.com/HQhse/421
Last Update:
Использование ИИ в технологическом трансфере
Месяц назад в Nature вышла заметка основателя “Научного центра науки и инноваций Северо-Западного университета” Дашунь Вана (Dashun Wang), посвященная использованию алгоритмов ИИ для выявления ученых, нуждающихся в поддержке их научных результатов для практического приложения.
Во время пилотного проекта исследовательской группы Вана обнаружилось, что одна исследовательница в области биологии не знала о влиянии своих научных работ на рынок, но в результате знакомства с подразделением технологического трансфера она узнала, что частные компании широко цитируют ее исследования в своих патентах, и подала заявку на регистрацию своего изобретения. Этот пример сподвигнул Вана задаться вытекающими из этого кейса вопросами: можно ли выявить исследователей с невостребованным инновационным потенциалом и каким образом?
В течение нескольких лет исследовательский коллектив Вана работал с различными университетами США, пытаясь найти оптимальные способы максимизировать результаты научной деятельности.
В ходе исследования обнаружились некоторые потворяющиеся паттерны, например:
- женщины реже патентуют свои работы, чем мужчины (причем разница — от двух до десяти раз в зависимости от области), при одинаковом (судя по цитируемости) уровне работы;
- преподаватели с постоянным контрактом подают заявки чаще, чем те, кто трудоустроен по временному контракту.
Кроме того, выяснилось, что существует довольно много ученых, которые не стремятся к трансферу технологий, не взаимодействуют с соответствующим департаментом (а такие есть почти во всех университетах), не подают заявки на патенты.
Ван и его коллеги полагают, что публикующиеся ежегодно наборы данных о миллионах статей, препринтов и грантовых заявок можно анализировать при помощи ИИ, чтобы выявить пробелы и узкие места, которые мешают технологическим прорывам.
Одним из главных хайлайтов статьи является утверждение Вана о дихотомии между фундаментальными и прикладными исследованиями и условиями современности: сложно спрогнозировать какие исследования найдут непосредственное технологическое применение.
Вывод Вана состоит в том, что исследования были бы намного влиятельней, если бы университеты использовали инструменты ИИ с целью поиска научных результатов своих сотрудников, к которым применим технологический трансфер.
#обзор #искусственныйинтеллект #патенты
BY Выше квартилей
Share with your friend now:
tgoop.com/HQhse/421