✅ یادگیری ماشین و مدلسازی بیزی در تحلیل علوم اعصاب، مدلهای آماری مختلفی برای تفسیر دادههای پیچیده و به دست آوردن بینشهای معنادار استفاده میشود. این مدلها را میتوان بهطور کلی به روشهای آمار کلاسیک و یادگیری ماشینی دستهبندی کرد که هر کدام اهداف مشخصی را در تحقیقات انجام میدهند.بخشهای زیر محبوبترین مدلهای آماری مورد استفاده در علوم اعصاب را تشریح میکند.
◀️آمار کلاسیک آزمون فرضیه صفر: روشهای رایج مورد استفاده شامل آزمونهای t و ANOVA هستند که به تعیین اهمیت اثرات مشاهدهشده در دادههای تصویربرداری عصبی کمک میکنند.
🟣تجزیه و تحلیل رگرسیون: این روشها روابط بین متغیرها را ارزیابی میکنند و بینشی در مورد عملکرد و ساختار مغز ارائه میکنند.
◀️رویکردهای یادگیری ماشینی یادگیری نظارت شده: تکنیکهایی مانند ماشینهای بردار پشتیبان (SVM)، درختهای تصمیمگیری و شبکههای عصبی اغلب برای کارهای طبقهبندی در علوم اعصاب استفاده میشوند.
🟣مدلسازی بیزی: این رویکرد عدم قطعیت را تخمین میزند و مستقیماً ویژگیهایی را از مجموعه دادهها استنباط میکند و آن را برای درک پیشرفت بیماری ارزشمند میسازد.
✅ در حالی که آمار کلاسیک چارچوبی قوی برای آزمایش فرضیهها ارائه میکند، یادگیری ماشینی انعطافپذیری و سازگاری را در تجزیه و تحلیل دادههای با ابعاد بالا ارائه میدهد که نشاندهنده رابطه مکمل بین این دو روش در تحقیقات علوم اعصاب است.
📎مقالهی بررسی ابزارهای آمار زیستی رایج در علوم اعصاب به بررسی جمعبندی رویکردهای مختلف در بیماریهای گوناگون میپردازد و امیدوار است که نقش بالقوه ابزارهای آمار زیستی در علوم اعصاب را معرفی کند.
⌛ یادگیری ماشین به عنوان یک روش برای ساخت مدلها و شناسایی همبستگیها میان ویژگیهای دادهها شناخته میشود. در این زمینه، تکنیکهایی مانند رگرسیون لجستیک، درختهای تصمیم، ماشینهای بردار پشتیبان (SVM)، جنگل تصادفی (RF) و شبکههای عصبی به عنوان رویکردهای رایج مورد استفاده قرار میگیرند. همچنین، مدلسازی بیزی به دلیل تواناییاش در برآورد ویژگیها بهطور مستقیم از مجموعه دادهها و نه از طریق توزیع نمونهبرداری، به عنوان روشی برای مدیریت عدم قطعیت مدلها مطرح است. این روشها در تشخیص و پیشرفت بیماریها در علوم اعصاب بسیار کارآمد بودهاند.
✅ یادگیری ماشین و مدلسازی بیزی در تحلیل علوم اعصاب، مدلهای آماری مختلفی برای تفسیر دادههای پیچیده و به دست آوردن بینشهای معنادار استفاده میشود. این مدلها را میتوان بهطور کلی به روشهای آمار کلاسیک و یادگیری ماشینی دستهبندی کرد که هر کدام اهداف مشخصی را در تحقیقات انجام میدهند.بخشهای زیر محبوبترین مدلهای آماری مورد استفاده در علوم اعصاب را تشریح میکند.
◀️آمار کلاسیک آزمون فرضیه صفر: روشهای رایج مورد استفاده شامل آزمونهای t و ANOVA هستند که به تعیین اهمیت اثرات مشاهدهشده در دادههای تصویربرداری عصبی کمک میکنند.
🟣تجزیه و تحلیل رگرسیون: این روشها روابط بین متغیرها را ارزیابی میکنند و بینشی در مورد عملکرد و ساختار مغز ارائه میکنند.
◀️رویکردهای یادگیری ماشینی یادگیری نظارت شده: تکنیکهایی مانند ماشینهای بردار پشتیبان (SVM)، درختهای تصمیمگیری و شبکههای عصبی اغلب برای کارهای طبقهبندی در علوم اعصاب استفاده میشوند.
🟣مدلسازی بیزی: این رویکرد عدم قطعیت را تخمین میزند و مستقیماً ویژگیهایی را از مجموعه دادهها استنباط میکند و آن را برای درک پیشرفت بیماری ارزشمند میسازد.
✅ در حالی که آمار کلاسیک چارچوبی قوی برای آزمایش فرضیهها ارائه میکند، یادگیری ماشینی انعطافپذیری و سازگاری را در تجزیه و تحلیل دادههای با ابعاد بالا ارائه میدهد که نشاندهنده رابطه مکمل بین این دو روش در تحقیقات علوم اعصاب است.
📎مقالهی بررسی ابزارهای آمار زیستی رایج در علوم اعصاب به بررسی جمعبندی رویکردهای مختلف در بیماریهای گوناگون میپردازد و امیدوار است که نقش بالقوه ابزارهای آمار زیستی در علوم اعصاب را معرفی کند.
⌛ یادگیری ماشین به عنوان یک روش برای ساخت مدلها و شناسایی همبستگیها میان ویژگیهای دادهها شناخته میشود. در این زمینه، تکنیکهایی مانند رگرسیون لجستیک، درختهای تصمیم، ماشینهای بردار پشتیبان (SVM)، جنگل تصادفی (RF) و شبکههای عصبی به عنوان رویکردهای رایج مورد استفاده قرار میگیرند. همچنین، مدلسازی بیزی به دلیل تواناییاش در برآورد ویژگیها بهطور مستقیم از مجموعه دادهها و نه از طریق توزیع نمونهبرداری، به عنوان روشی برای مدیریت عدم قطعیت مدلها مطرح است. این روشها در تشخیص و پیشرفت بیماریها در علوم اعصاب بسیار کارآمد بودهاند.
3How to create a Telegram channel? Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. To upload a logo, click the Menu icon and select “Manage Channel.” In a new window, hit the Camera icon. Select “New Channel” As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.”
from us