ITBROADCAST Telegram 6002
Forwarded from Сиолошная
This media is not supported in your browser
VIEW IN TELEGRAM
Real-World Humanoid Locomotion with Reinforcement Learning

Долгое время основной проблемой AI в робототехнике был Sim2Real Gap — разница между симуляцией и реальностью. Можно сколь угодно долго тренировать своих ботов в компьютере, но как только они сталкиваются с жесткой реальностью (типа отходняка в субботу) — мало что работает.

Исследователи из Berkeley показали невероятный результат — они смогли обучиться полностью в симуляции, а затем запустить нейронку на реальном роботе (1.6 метра/45 кг). И всё это end-2-end, без ручного программирования логики. Вы можете спросить: «так а чё, Boston Dynamics нас уже 10 лет таким развлекают?». Да, но у них долгое время вся логика была прописана вручную программистами, и это, как вы понимаете, плохо масштабируется. Обучение новому навыку может занимать год. А тут — всё сделано без вмешательства человека от начала и до конца. Это называется Zero-shot transfer (потому что с нулем дополнительных данных мы пренесли навык из симуляции).

Ключевых отличия от прошлых работ 2:
— масштаб сбора данных. Симуляция и обучение происходят на 4 GPU A100 (очень мало по современным меркам. GPT-4, по слухам, обучали на 25'000!) с помощью специального движка Nvidia IsaacGym, и в сутки генерируется больше 10 миллиардов попыток.
— как и принято в Deep Learning, все ручные эвристики убрали, и отдали на откуп Трансформеру: тот видит только состояние среды и действия из прошлого, и предсказывает, что нужно делать дальше (как GPT предсказывает следующее слово, так и этот — действия для конечностей). Никакого хардкода типа «если впереди ступеньки, то замедлись и подними ногу».

Вот вы читаете новость и радуетесь, а Джон Коннор сморит на вас из будущего с гримасой непонимания 😂😳
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/ITBroadcast/6002
Create:
Last Update:

Real-World Humanoid Locomotion with Reinforcement Learning

Долгое время основной проблемой AI в робототехнике был Sim2Real Gap — разница между симуляцией и реальностью. Можно сколь угодно долго тренировать своих ботов в компьютере, но как только они сталкиваются с жесткой реальностью (типа отходняка в субботу) — мало что работает.

Исследователи из Berkeley показали невероятный результат — они смогли обучиться полностью в симуляции, а затем запустить нейронку на реальном роботе (1.6 метра/45 кг). И всё это end-2-end, без ручного программирования логики. Вы можете спросить: «так а чё, Boston Dynamics нас уже 10 лет таким развлекают?». Да, но у них долгое время вся логика была прописана вручную программистами, и это, как вы понимаете, плохо масштабируется. Обучение новому навыку может занимать год. А тут — всё сделано без вмешательства человека от начала и до конца. Это называется Zero-shot transfer (потому что с нулем дополнительных данных мы пренесли навык из симуляции).

Ключевых отличия от прошлых работ 2:
— масштаб сбора данных. Симуляция и обучение происходят на 4 GPU A100 (очень мало по современным меркам. GPT-4, по слухам, обучали на 25'000!) с помощью специального движка Nvidia IsaacGym, и в сутки генерируется больше 10 миллиардов попыток.
— как и принято в Deep Learning, все ручные эвристики убрали, и отдали на откуп Трансформеру: тот видит только состояние среды и действия из прошлого, и предсказывает, что нужно делать дальше (как GPT предсказывает следующее слово, так и этот — действия для конечностей). Никакого хардкода типа «если впереди ступеньки, то замедлись и подними ногу».

Вот вы читаете новость и радуетесь, а Джон Коннор сморит на вас из будущего с гримасой непонимания 😂😳

BY IT Broadcast


Share with your friend now:
tgoop.com/ITBroadcast/6002

View MORE
Open in Telegram


Telegram News

Date: |

Informative Invite up to 200 users from your contacts to join your channel A Telegram channel is used for various purposes, from sharing helpful content to implementing a business strategy. In addition, you can use your channel to build and improve your company image, boost your sales, make profits, enhance customer loyalty, and more. With the “Bear Market Screaming Therapy Group,” we’ve now transcended language. Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group.
from us


Telegram IT Broadcast
FROM American