tgoop.com/MLunderhood/29
Last Update:
PPO для YandexGPT 4 Lite
Недавно инженеры Яндекса использовали онлайн-обучение с подкреплением для YandexGPT 4 Lite. На файнтюне этой модели использовались как DPO, так и PPO. Павел Темирчев, один из разработчиков команды алаймента Яндекса, рассказал нам, как внедряли эти методы.
Proximal Policy Optimization (PPO) — метод, который предполагает применение размеченных асессорами данных для обучения reward-модели. Это итеративный и весьма трудоёмкий процесс. Сложность, в частности, заключается в том, что модель должна прямо во время обучения генерировать ответы. Кроме того, необходимо хранить в памяти GPU не только обучаемую, но и ряд вспомогательных моделей. Например, value-модель, которая содержит информацию о наградах и используется в алгоритме как бейзлайн.
Важной частью внедрения PPO для обучения YandexGPT 4 Lite стало создание правильной инфраструктуры — от этого зависит примерно 50% успеха. Кроме того, была проведена большая работа с обучающим множеством. Инженеры перебрали разные варианты того, на чём можно обучать модель.
Также было важно не дать модели переобучиться под reward-модель. Для этого существует практика штрафа, который накладывается, если обучаемая модель слишком далеко ушла от SFT. В Яндексе попробовали применить разные варианты штрафов, чтобы выбрать наиболее подходящий.
Из хаков использовали, например, нормализацию advantage, то есть разницы награды за ответ и средней награды. Этот трюк позволяет получить более стабильную сходимость взамен теоретических гарантий.
На алайменте YandexGPT 4 Lite проводили сперва онлайн RL — PPO, а затем DPO. Комбинация методов позволила получить хорошие результаты, которые превосходят полученные от каждого метода отдельно.
Делитесь своими мыслями о PPO и DPO в комментариях!
ML Underhood
BY ML Underhood
❌Photos not found?❌Click here to update cache.
Share with your friend now:
tgoop.com/MLunderhood/29