tgoop.com/abba_testing/73
Last Update:
Привет, товарищи статистики.
Хотел поделится впечатлениям от докладов, которые хотел посетить и посетил на Aha.
1) "Causal Impact. Как делать эксперименты там, где нет классический AB-тестов. Теория, практика и "подводные камни" метода"
Очень надеялся, что подача будет иная. Так и получилось. Лучший доклад из всех, что был на конференции. Конкретный, последовательный. Вообще, очень классно, что презентация сама по себе содержательна: так и надо делать.
Дмитрий наглядно погружает в метод, библиотеку, ряд проблем и далее дает рекомендации, как проблемы эти преодолеть. Опять-таки, наглядно (я такое очень люблю и сам стараюсь практиковать)
Выделю несколько моментов, не по порядку:
- Отдавать предпочтение классическим A/B-тестам (sic!)
- Оценивать уровень стат. значимости и мощность через Монте-Карло (так вы поймете не просто их значения, но и надо ли вам тюнить модель прогноза или нет)
- Критерии качества модели прогноза и указания на работу с гиперпараметрами (были ссылки на видео и на статью)
- Поиск ковариат (независимая предсказательная/контрольная переменная)
Очень хороший доклад как опорный материал к Causual Impact. В целом, этот метод становится востребованым к пониманию на рынке, рекомендую погрузится. Сделать это можно через следующие материалы (на английском):
- онлайн книга в открытом доступе
- онлайн курс от того автора в открытом доступе
2) Как каузальные графы и линейные модели ответят на все ваши вопросы в A/B-тестах
Докладчиком был Кирилл, глава аналитики в HH (как оказалось, как автора я его знаю - ninja на medium, вот статья, которую я чаще видел в репостах, про требования нормальности в t-test'e). После его выступления я поговорил с ним, чтобы "спрямить" свои впечатления.
Поэтому выскажусь в хорошем ключе так: я согласен с прогнозом Кирилла, который он высказал в личной беседе, что линейные модели это вероятно новый будущий хайп в ближайшие годы. Действительно, A/B через линейки это тот же самый t-test, только сбоку, а если накидывать контрольных переменных, то можно "очищать эффект", и, - чего не было в докладе, - сразу оценивать по сегментам результаты. Все в рамках одного кода.
Но есть проблемы:
- спутывающие переменные (confounding var.), которые влияют и на воздействие и на то, на что целится воздействие
- графах связанности переменных: визуально штуки-то простые, три "шарика" переменных, три связи (цепочка, вилка, бумага, коллайдер), а далее их вариации, но сами связи и то, что происходит, если "условится", непривычно воспринимать.
- надо исследовать метрики на предмет того, какой вид группировок "шариков" сходится с реальностью: в общем, вместо дерева метрик предлагается строить графы метрик (что так-то методологически правильнее)
Все это по сути тоже про Causal, но c другой стороны: Сausal Inference
Есть очень хороший видео-материал на английском. Достаточно понятный, но все равно немного привыкнуть к "шарикам" и способу мысли за ними будет нужно.
В общем, штука перспективная, по словам Кирилла уже давно в практике зарубежом (подход вроде выработал гугл в 10-х годах), а до нас катится лишь сейчас, классика. Интересно посмотреть, сбудется ли прогноз. Но в любом случае перейти в свои ноутах на линейные модели в пост-хоке рекомендую.
Если же сделать шаг назад и рассказать о докладе, то, кратко говоря, это был порыв души сообщить не без волнения о том, что возможно грядет покайтесь, грешники; учите матчасть. Будет непонятно, но если посмотрите курс выше с пересмотром, то понятно :)
3) - "Влияние сетевого эффекта в AБ-тестах на unit-экономику в ритейле"
Вообще, я бы тут не столько говорил о сетевом эффекте, сколько об учете костов в рамках вашей инициативы, то есть в идеале проводить A/B с учетом затрат по каждой группе (короче, быть в рамках unit-экономики). А то вполне может быть так, что в группе B стат. значимый прирост, но из-за повышенных расходов по экономике убыток.
—
Уже только благодаря этим докладам я рад, что побывал на конфе. Но помимо этого увиделся со многими вживую: рад был всех увидеть и пообщаться!
Вот такие вот впечатления.
BY Не AБы какие тесты
Share with your friend now:
tgoop.com/abba_testing/73