AI_NEWZ Telegram 2550
Что такое Mixture of Experts (MoE)?

МоЕ — это вид моделей, который используется в куче современных LLM. Далеко ходить не надо — пять из шести моделей, о которых я рассказывал в дайджесте на прошлой неделе, были MoE. GPT-4, судя по слухам, подтверждённым Хуангом – тоже MoE.

Чем MoE отличаются от обычных (dense) моделей?

В MoE часть слоев заменяется на sparse (разреженные) MoE-слои. Они состоят из нескольких "экспертов" — по сути, отдельных небольших слоёв. Для каждого токена используется только небольшая часть экспертов. Решает, какие токены обрабатываются каким экспертами, специальная "сеть-маршрутизатор".  Это позволяет MoE быть быстрее чем dense модели, как в тренировке так и в инференсе.

Почему MoE используют?

Модели с MoE учатся в разы быстрее обычных с таким же количеством компьюта. Авторы DBRX хвастались что их конфиг MoE учится в 2 раза быстрее их же dense модели, а у авторов Qwen-MoE прирост скорости был вообще 4x.

Откуда такая разница между разными MoE в приросте эффективности тренировки?

Когда учится MoE, нужно балансировать потребление памяти, эффективность тренировки и скорость выполнения, что достигается уменьшением или увеличением общего числа экспертов, числа активных экспертов и размера экспертов. Разные команды используют разные конфигурации, отсюда и разница.

Почему MoE не используют везде?

MoE потребляет в разы больше памяти чем обычные модели, что касается и обучения и инференса. На практике большее количество памяти означает большее количество видеокарт. Для запуска Grok, например, нужно 8 видеокарт. Для GPT-4, по слухам, нужно вообще 64 видеокарты. Чтобы это имело финансовый смысл, нужен определенный уровень нагрузки, который есть не у всех. Плюс тот факт, что модель - MoE, часто ставит крест на возможности запуска на потребительских видеокартах.

Как их запускают?

Модель разбивают на несколько видеокарт (например, с помощью tensor parallelism). На каждую видеокарту кидается одинаковое количество экспертов и используют трюки чтобы убедиться что на каждого приходится одинаковая нагрузка.

Как это выглядит применимо к трансформерам?

Обычно эксперты в MoE делаются на основе слоёв MLP внутри трансформера. То есть вместо одного MLP делают несколько параллельных, но одновременно используется только часть из них. Остальные части модели (attention, эмбеддинги) — общие для всех экспертов.

>> Блогпост про MoE с большим числом деталей

#ликбез
@ai_newz



tgoop.com/ai_newz/2550
Create:
Last Update:

Что такое Mixture of Experts (MoE)?

МоЕ — это вид моделей, который используется в куче современных LLM. Далеко ходить не надо — пять из шести моделей, о которых я рассказывал в дайджесте на прошлой неделе, были MoE. GPT-4, судя по слухам, подтверждённым Хуангом – тоже MoE.

Чем MoE отличаются от обычных (dense) моделей?

В MoE часть слоев заменяется на sparse (разреженные) MoE-слои. Они состоят из нескольких "экспертов" — по сути, отдельных небольших слоёв. Для каждого токена используется только небольшая часть экспертов. Решает, какие токены обрабатываются каким экспертами, специальная "сеть-маршрутизатор".  Это позволяет MoE быть быстрее чем dense модели, как в тренировке так и в инференсе.

Почему MoE используют?

Модели с MoE учатся в разы быстрее обычных с таким же количеством компьюта. Авторы DBRX хвастались что их конфиг MoE учится в 2 раза быстрее их же dense модели, а у авторов Qwen-MoE прирост скорости был вообще 4x.

Откуда такая разница между разными MoE в приросте эффективности тренировки?

Когда учится MoE, нужно балансировать потребление памяти, эффективность тренировки и скорость выполнения, что достигается уменьшением или увеличением общего числа экспертов, числа активных экспертов и размера экспертов. Разные команды используют разные конфигурации, отсюда и разница.

Почему MoE не используют везде?

MoE потребляет в разы больше памяти чем обычные модели, что касается и обучения и инференса. На практике большее количество памяти означает большее количество видеокарт. Для запуска Grok, например, нужно 8 видеокарт. Для GPT-4, по слухам, нужно вообще 64 видеокарты. Чтобы это имело финансовый смысл, нужен определенный уровень нагрузки, который есть не у всех. Плюс тот факт, что модель - MoE, часто ставит крест на возможности запуска на потребительских видеокартах.

Как их запускают?

Модель разбивают на несколько видеокарт (например, с помощью tensor parallelism). На каждую видеокарту кидается одинаковое количество экспертов и используют трюки чтобы убедиться что на каждого приходится одинаковая нагрузка.

Как это выглядит применимо к трансформерам?

Обычно эксперты в MoE делаются на основе слоёв MLP внутри трансформера. То есть вместо одного MLP делают несколько параллельных, но одновременно используется только часть из них. Остальные части модели (attention, эмбеддинги) — общие для всех экспертов.

>> Блогпост про MoE с большим числом деталей

#ликбез
@ai_newz

BY эйай ньюз




Share with your friend now:
tgoop.com/ai_newz/2550

View MORE
Open in Telegram


Telegram News

Date: |

With the administration mulling over limiting access to doxxing groups, a prominent Telegram doxxing group apparently went on a "revenge spree." To upload a logo, click the Menu icon and select “Manage Channel.” In a new window, hit the Camera icon. The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. To view your bio, click the Menu icon and select “View channel info.” Telegram offers a powerful toolset that allows businesses to create and manage channels, groups, and bots to broadcast messages, engage in conversations, and offer reliable customer support via bots.
from us


Telegram эйай ньюз
FROM American