AINASTIA Telegram 24
С чего начать, если планируете внедрять ИИ в компании, и почему ключевой аспект здесь - Data/AI maturity? 📊

Давайте для начала решим вопрос: почему для компаний почти всех индустрий тема данных и ИИ сейчас так важны?

Технология прогрессирует всё быстрее и быстрее. Технологические трансформации приходят волнами, и несмотря на то, что в данный момент между каждой волной проходит 3-5 лет, это расстояние в будущем будет сильно сокращаться. Каждая волна предоставляет компаниям возможность выстроить конкурентное преимущество или рискнуть возможно невозвратно отстать от конкурентов. CEO Databricks, Али Годси, предсказал, что в долгосрочной перспективе (~10 лет) во всех индустриях лидеры с конкурентным преимуществом будут ориентированы на данные и AI. Считается, что Data/AI-driven компании способны увеличить доход на 15-25%.
[Как мы обсудим в одном из будущих постов, сами по себе данные и ИИ не являются гарантией успеха - есть определенные условия, от наличия которых зависит, принесет ли ваш проект на основе данных и ИИ прибыль или будет провалом!]

Зная, зачем нужна AI-трансформация, появляется следующий вопрос – с чего начать этот процесс? Первые шаги к AI-трансформации всегда должны быть следующими:
1️⃣оценка Data/AI maturity (где компания сейчас?) и
2️⃣формирование стратегических целей C-level лидеров (до куда компания хочет дойти?).

Каждый бизнес, продукт или проект проходят через разные стадии Data/AI зрелости. Это значит, что в начинающих уровнях данные собираются ещё не системно и без особой отдачи - но со временем через вклад инженеров инфраструктура и сбор данных становятся более «зрелыми» и обеспечивают более продвинутые ML модели.

Большинство legacy компаний в данный момент находятся на уровне 1 или уровне 2 (AI interest & experimentation), как подчеркивает статистика от Accenture на скриншоте. Кроме этого legacy компании часто сильно переоценивают количество и качество своих данных, а также возможности своей инфраструктуры. Большинство компаний сегодня вообще не в состоянии продвинуться дальше уровня 3 (AI частично в проде). [Как взяться за инфраструктуру и какие аспекты важны, чтобы обеспечить эффективные продукты на основе данных и ИИ, я буду освещать в отдельном посте.]

Суть модели Data/AI maturity заключается в оценке текущих способностей компании в области данных/ИИ и обозначении потенциального дальнейшего пути в процессе ИИ-трансформации.

При этом важно понимать, что далеко не каждая компания обязана проходить все стадии Data/AI зрелости. Фундаментально важно, чтобы руководство компании формулировало vision и конкретные бизнес-цели чтобы потом в коллаборации с техническими стратегами обеспечить связь между технологической цепью и бизнес-value. Этот элемент как раз часто не присутствует в многих компаниях и приводит к разочаровывающим результатам. Целевая Data/AI maturity всегда должна быть оправдана отдачей!

В ближайшем посте я поделюсь с вами оценкой, которая поможет вам оценить зрелость данных/ИИ в вашей компании - stay tuned!

Если компания решила продвигаться по оси Data/AI maturity и инвестировать в развитие ИИ на основе стратегических решений, инвесторы и руководство фирмы будут ожидать быстрых и постепенных результатов от инициативы. Это значит, что правление компании, которая условно в первом квартале проинвестировало в Data/AI проекты, требует быть в состоянии показывать отдачу уже во втором или третьем квартале. Таковы правила игры в нынешних реалиях.

Как обеспечить это и почему в прошлом около 87% Data Science проектов в компаниях были провалом, мы обсудим также скоро!

#datapm #aipm #strategy
@ainastia
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/ainastia/24
Create:
Last Update:

С чего начать, если планируете внедрять ИИ в компании, и почему ключевой аспект здесь - Data/AI maturity? 📊

Давайте для начала решим вопрос: почему для компаний почти всех индустрий тема данных и ИИ сейчас так важны?

Технология прогрессирует всё быстрее и быстрее. Технологические трансформации приходят волнами, и несмотря на то, что в данный момент между каждой волной проходит 3-5 лет, это расстояние в будущем будет сильно сокращаться. Каждая волна предоставляет компаниям возможность выстроить конкурентное преимущество или рискнуть возможно невозвратно отстать от конкурентов. CEO Databricks, Али Годси, предсказал, что в долгосрочной перспективе (~10 лет) во всех индустриях лидеры с конкурентным преимуществом будут ориентированы на данные и AI. Считается, что Data/AI-driven компании способны увеличить доход на 15-25%.
[Как мы обсудим в одном из будущих постов, сами по себе данные и ИИ не являются гарантией успеха - есть определенные условия, от наличия которых зависит, принесет ли ваш проект на основе данных и ИИ прибыль или будет провалом!]

Зная, зачем нужна AI-трансформация, появляется следующий вопрос – с чего начать этот процесс? Первые шаги к AI-трансформации всегда должны быть следующими:
1️⃣оценка Data/AI maturity (где компания сейчас?) и
2️⃣формирование стратегических целей C-level лидеров (до куда компания хочет дойти?).

Каждый бизнес, продукт или проект проходят через разные стадии Data/AI зрелости. Это значит, что в начинающих уровнях данные собираются ещё не системно и без особой отдачи - но со временем через вклад инженеров инфраструктура и сбор данных становятся более «зрелыми» и обеспечивают более продвинутые ML модели.

Большинство legacy компаний в данный момент находятся на уровне 1 или уровне 2 (AI interest & experimentation), как подчеркивает статистика от Accenture на скриншоте. Кроме этого legacy компании часто сильно переоценивают количество и качество своих данных, а также возможности своей инфраструктуры. Большинство компаний сегодня вообще не в состоянии продвинуться дальше уровня 3 (AI частично в проде). [Как взяться за инфраструктуру и какие аспекты важны, чтобы обеспечить эффективные продукты на основе данных и ИИ, я буду освещать в отдельном посте.]

Суть модели Data/AI maturity заключается в оценке текущих способностей компании в области данных/ИИ и обозначении потенциального дальнейшего пути в процессе ИИ-трансформации.

При этом важно понимать, что далеко не каждая компания обязана проходить все стадии Data/AI зрелости. Фундаментально важно, чтобы руководство компании формулировало vision и конкретные бизнес-цели чтобы потом в коллаборации с техническими стратегами обеспечить связь между технологической цепью и бизнес-value. Этот элемент как раз часто не присутствует в многих компаниях и приводит к разочаровывающим результатам. Целевая Data/AI maturity всегда должна быть оправдана отдачей!

В ближайшем посте я поделюсь с вами оценкой, которая поможет вам оценить зрелость данных/ИИ в вашей компании - stay tuned!

Если компания решила продвигаться по оси Data/AI maturity и инвестировать в развитие ИИ на основе стратегических решений, инвесторы и руководство фирмы будут ожидать быстрых и постепенных результатов от инициативы. Это значит, что правление компании, которая условно в первом квартале проинвестировало в Data/AI проекты, требует быть в состоянии показывать отдачу уже во втором или третьем квартале. Таковы правила игры в нынешних реалиях.

Как обеспечить это и почему в прошлом около 87% Data Science проектов в компаниях были провалом, мы обсудим также скоро!

#datapm #aipm #strategy
@ainastia

BY Anastasia.ai – Tech Entrepreneur in🇨🇭





Share with your friend now:
tgoop.com/ainastia/24

View MORE
Open in Telegram


Telegram News

Date: |

Co-founder of NFT renting protocol Rentable World emiliano.eth shared the group Tuesday morning on Twitter, calling out the "degenerate" community, or crypto obsessives that engage in high-risk trading. Some Telegram Channels content management tips On June 7, Perekopsky met with Brazilian President Jair Bolsonaro, an avid user of the platform. According to the firm's VP, the main subject of the meeting was "freedom of expression." Clear
from us


Telegram Anastasia.ai – Tech Entrepreneur in🇨🇭
FROM American