tgoop.com/ainastia/41
Last Update:
Про нетерпеливость
Во многих компаниях руководство резко загорелось продвигать AI с момента запуска ChatGPT и стало требовать как можно быстрее создавать AI-продукты. Желательно ещё вчера, ведь «все делают GenAI, и мы тоже хотим!» Однако тушить такой энтузиазм особенно сложно, когда приходится объяснять, что, увы, всё не так уж просто. И что, к сожалению, попытки перескочить важные этапы на пути к цели ни к чему хорошему не приведут.
Я уже писала в одном из предыдущих постов, что процесс внедрения AI в любой компании должен начинаться с оценки data/AI maturity. Это уровень прогресса компании в использовании данных, развитии соответствующих юзкейсов и их интеграции в процессы организации. Каждой компании нужно индивидуально решать, до какого уровня стоит развиваться. Нет универсального решения, подходящего для всех!
После того как вы поняли, на каком уровне зрелости находится ваша компания и до какого уровня стоит развиваться, следующий шаг — работа над data architecture. Архитектура данных должна отражать текущие и будущие потребности, которые позволят реализовать юзкейсы и вписаться в долгосрочную стратегию компании. Здесь для начала нужно понять сам бизнес и его потребности для развития. Затем эти требования необходимо отобразить в технические requirements. Это включает, например, методы сбора, хранения и обработки данных, а также аспекты безопасности. Как всегда, нет единственного правильного решения — придется взвешивать cost-benefit каждой компоненты и функциональности. Например, вы хотите real-time везде? А реально везде оно вам нужно смотря на то что это обойдется вам дороже? Ценность для бизнеса оправдывает цену?
Все хотят AI, но компании часто слишком рано ныряют в этот пруд. Прежде чем вкладывать огромные ресурсы в AI, необходимо заложить надёжный фундамент. Это включает и не самые «sexy» темы, как data governance: обеспечение качественных данных, плавную интеграцию различных источников и понимание, какие данные где вообще находятся. Многие компании столкнулись с неудачами, начав проекты без этой основы.
Ещё на практике часто слишком рано нанимают Data Scientists для создания модных AI-решений. При этом данные разбросаны по всей инфраструктуре, нет стандартов, и их работа сводится к data engineering, используя большое количество «изоленты», чтобы хоть как-то реализовать юзкейсы на старых системах. В итоге ни ROI от юзкейса не оправдывает ожиданий, ни Data Scientist не удовлетворён своей работой.
#datapm #aitransformation
@ainastia