tgoop.com/andre_dataist/134
Last Update:
Большие популяционные модели (LPM): как ИИ симулирует социальное поведение?
В знаменитой серии «Основание» Айзека Азимова математик Хари Сэлдон создает «психоисторию» — науку, способную предсказывать будущее человечества на основе законов массового поведения. Хотя это художественная выдумка, идея отражает глубокую истину: чтобы формировать наше общее будущее, нам необходимо понимать коллективное человеческое поведение.
Сегодня мы стоим на пороге революции в изучении общества. Большие популяционные модели (Large Population Models, LPMs) предлагают нам постоянно обновляющийся портрет человечества, который отражает сложные взаимодействия миллионов отдельных людей.
Большие языковые модели (LLMs) уже продемонстрировали способность генерировать связный текст, предсказывая следующее слово (токен) в предложении. LPMs берут эту концепцию, но вместо предсказания следующего слова, они предсказывают неизвестные атрибуты людей на основе известных данных. Это позволяет моделировать поведение целых обществ, заполняя пробелы в данных и создавая более полную картину человеческого взаимодействия.
Например, если мы знаем возраст, пол и место жительства человека, модель может предсказать его уровень дохода, образование или поведенческие привычки.
Потенциальные области применения больших популяционных моделей обширны:
- Здравоохранение: В период пандемии LPMs могут помочь моделировать распространение заболеваний, основываясь на передвижениях и контактах людей;
- Социальные исследования: Предупреждение о возможных социальных волнениях или гуманитарных кризисах путем анализа настроений и поведения больших групп людей;
- Экономика: Правительства и корпорации могут использовать модели для прогнозирования экономических тенденций и адаптации политик в соответствии с динамикой местных экономик.
Недавно ученые разработали модель под названием «Центавр». Эта модель способна предсказывать и симулировать человеческое поведение в различных экспериментах, выраженных на естественном языке. Центавр создан путем дообучения Llama 3.1 70B методом QLoRA на уникальном наборе данных Psych-101. Этот набор данных охватывает более 60 000 участников, совершивших более 10 миллионов выборов в 160 различных экспериментах.
Интересно, что дообучение модели также улучшает согласованность внутренних представлений Центавра с нейронной активностью человека. Это означает, что модель не только предсказывает поведение, но и демонстрирует внутренние процессы, схожие с теми, что происходят в человеческом мозге. Это не просто шаг вперед в когнитивных науках, но и пример того, как большие модели могут помочь нам понять сложность человеческого поведения.
Сегодня в сфере маркетинговых исследований появляются так называемые синтетические респонденты — искусственные персоны для имитации человеческих ответов. Они могут использоваться для быстрой оценки новых продуктов или идей без необходимости проведения масштабных опросов.
Авторы этой статьи считают замену респондентов LLM привлекательной из-за скорости и дешевизны, но модели пока плохо передают сложные взаимосвязи, дают слишком однородные данные, зависят от контекста и могут искажать восприятие общественного мнения.
LPMs предлагают нам инструменты для более глубокого понимания общества для принятия обоснованных решений. Хотя такие модели могут сэкономить время и ресурсы, компании должны быть осторожны, чтобы не полагаться полностью на синтетических респондентов, а использовать их в сочетании с традиционными методами исследований.
С такой мощной технологией приходит и большая ответственность. Важно обеспечить, чтобы использование LPMs было этичным и уважало конфиденциальность людей. Цель должна быть не в том, чтобы манипулировать обществом, а в том, чтобы лучше его понимать и принимать обоснованные решения. Будущее не предопределено, поэтому с помощью LPMs у нас есть возможность формировать его в лучшую сторону, используя знания для общего блага и прогресса всего человечества.
#технологии
BY 🤖 Датаист
Share with your friend now:
tgoop.com/andre_dataist/134