ANDRE_DATAIST Telegram 151
Большой потенциал малых языковых моделей

Современный бум ИИ уже давно не сводится к крупным разработкам от гигантов вроде OpenAI или Anthropic, инвестирующих миллиарды в большие языковые модели. Наоборот, всё чаще в фокус внимания попадают малые языковые модели (Small Language Models, SLMs), способные решать узкоспециализированные задачи не хуже (а порой и лучше) своих «старших собратьев».

Яркий пример — стартап Patronus AI со своей моделью Glider, имеющей 3,8 миллиарда параметров. Большинство компаний применяют для оценки своих продуктов крупные закрытые модели вроде GPT-4. Но это дорого, не всегда прозрачно и несет риски для конфиденциальности. Glider же, будучи относительно компактной, способна работать на более простом «железе» и при этом давать детальное объяснение своих оценок по сотням критериев (точность, безопасность, стиль, тон и т. д.).

По результатам тестов Glider превосходит GPT-4o mini по нескольким метрикам и отвечает в среднем менее чем за секунду, что делает ее практически идеальным решением для генерации текста в реальном времени.

Большие языковые модели, безусловно, продолжают впечатлять своей универсальностью, но их недостатки очевидны:

- Высокие затраты на ресурсы. Обучение и инференс больших моделей требуют колоссальных вычислительных мощностей, что приводит к дополнительным расходам на инфраструктуру, электроэнергию и обслуживание;

- Низкая конфиденциальность. Использование больших закрытых моделей предполагает отправку данных во внешний облачный сервис, что критично для финансовых организаций и здравоохранения;

- Зависимость от интернета. При отсутствии доступа к сети такие модели попросту недоступны;

Малые языковые модели, напротив, легко разворачиваются на локальном сервере или даже на обычном пользовательском устройстве, снижая задержки при ответах и повышая контроль над безопасностью. Им не нужны сотни гигабайт видеопамяти, а адаптация к узконаправленной задаче и интеграция в собственную инфраструктуру обходятся заметно дешевле и проще. Дополнительно малые модели экономят электроэнергию и бережнее относятся к экологии.

Малые языковые модели можно либо обучать с нуля под конкретную задачу, либо «сжимать» уже готовые большие модели, используя методы прунинга, квантизации и дистилляции знаний, сохраняя высокое качество при сокращении числа параметров.

Набирают популярность и гибридные системы, в которых несколько малых моделей берут на себя простые запросы, а большая модель выступает их «роутером» и используется для более сложных задач.

Помимо Glider, существуют такие модели, как Gemma (Google), GPT-4o mini (OpenAI), Ministral (Mistral AI), Phi (Microsoft) и Llama 3.2 (Meta). Все они ориентированы на локальное использование в задачах, где высоки требования к приватности и быстроте отклика.

Малые языковые модели незаменимы там, где требуется локальная обработка данных: в медицине (электронные записи пациентов, выписки, рецепты) или финансовой сфере (работа с регулятивными документами). Их размер снижает риск «галлюцинаций», помогает быстрее достичь высоких результатов в узкоспециализированных областях и защищает конфиденциальную информацию.

В действительности большие и малые языковые модели — это две параллельные ветви эволюции, которые не исключают, а взаимно дополняют друг друга. Большие модели лучше справляются с универсальными задачами, требующими миллиарды параметров и богатого контекста, а малые эффективнее работают над узкоспециализированными кейсами, обеспечивая локальную приватность и минимизируя затраты.

В ближайшие годы мы увидим стремительный рост гибридных решений, где оба типа моделей будут работать вместе. В результате мы получим еще более умные, надежные и быстрые ИИ-сервисы, способные удовлетворить самые разнообразные потребности практически любого бизнеса.

#технологии



tgoop.com/andre_dataist/151
Create:
Last Update:

Большой потенциал малых языковых моделей

Современный бум ИИ уже давно не сводится к крупным разработкам от гигантов вроде OpenAI или Anthropic, инвестирующих миллиарды в большие языковые модели. Наоборот, всё чаще в фокус внимания попадают малые языковые модели (Small Language Models, SLMs), способные решать узкоспециализированные задачи не хуже (а порой и лучше) своих «старших собратьев».

Яркий пример — стартап Patronus AI со своей моделью Glider, имеющей 3,8 миллиарда параметров. Большинство компаний применяют для оценки своих продуктов крупные закрытые модели вроде GPT-4. Но это дорого, не всегда прозрачно и несет риски для конфиденциальности. Glider же, будучи относительно компактной, способна работать на более простом «железе» и при этом давать детальное объяснение своих оценок по сотням критериев (точность, безопасность, стиль, тон и т. д.).

По результатам тестов Glider превосходит GPT-4o mini по нескольким метрикам и отвечает в среднем менее чем за секунду, что делает ее практически идеальным решением для генерации текста в реальном времени.

Большие языковые модели, безусловно, продолжают впечатлять своей универсальностью, но их недостатки очевидны:

- Высокие затраты на ресурсы. Обучение и инференс больших моделей требуют колоссальных вычислительных мощностей, что приводит к дополнительным расходам на инфраструктуру, электроэнергию и обслуживание;

- Низкая конфиденциальность. Использование больших закрытых моделей предполагает отправку данных во внешний облачный сервис, что критично для финансовых организаций и здравоохранения;

- Зависимость от интернета. При отсутствии доступа к сети такие модели попросту недоступны;

Малые языковые модели, напротив, легко разворачиваются на локальном сервере или даже на обычном пользовательском устройстве, снижая задержки при ответах и повышая контроль над безопасностью. Им не нужны сотни гигабайт видеопамяти, а адаптация к узконаправленной задаче и интеграция в собственную инфраструктуру обходятся заметно дешевле и проще. Дополнительно малые модели экономят электроэнергию и бережнее относятся к экологии.

Малые языковые модели можно либо обучать с нуля под конкретную задачу, либо «сжимать» уже готовые большие модели, используя методы прунинга, квантизации и дистилляции знаний, сохраняя высокое качество при сокращении числа параметров.

Набирают популярность и гибридные системы, в которых несколько малых моделей берут на себя простые запросы, а большая модель выступает их «роутером» и используется для более сложных задач.

Помимо Glider, существуют такие модели, как Gemma (Google), GPT-4o mini (OpenAI), Ministral (Mistral AI), Phi (Microsoft) и Llama 3.2 (Meta). Все они ориентированы на локальное использование в задачах, где высоки требования к приватности и быстроте отклика.

Малые языковые модели незаменимы там, где требуется локальная обработка данных: в медицине (электронные записи пациентов, выписки, рецепты) или финансовой сфере (работа с регулятивными документами). Их размер снижает риск «галлюцинаций», помогает быстрее достичь высоких результатов в узкоспециализированных областях и защищает конфиденциальную информацию.

В действительности большие и малые языковые модели — это две параллельные ветви эволюции, которые не исключают, а взаимно дополняют друг друга. Большие модели лучше справляются с универсальными задачами, требующими миллиарды параметров и богатого контекста, а малые эффективнее работают над узкоспециализированными кейсами, обеспечивая локальную приватность и минимизируя затраты.

В ближайшие годы мы увидим стремительный рост гибридных решений, где оба типа моделей будут работать вместе. В результате мы получим еще более умные, надежные и быстрые ИИ-сервисы, способные удовлетворить самые разнообразные потребности практически любого бизнеса.

#технологии

BY 🤖 Датаист




Share with your friend now:
tgoop.com/andre_dataist/151

View MORE
Open in Telegram


Telegram News

Date: |

Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. Although some crypto traders have moved toward screaming as a coping mechanism, several mental health experts call this therapy a pseudoscience. The crypto community finds its way to engage in one or the other way and share its feelings with other fellow members. Add up to 50 administrators ZDNET RECOMMENDS
from us


Telegram 🤖 Датаист
FROM American