Сегодня поговорим про метод тройной разности (triple difference, TD difference-in-difference-in-differences, DDD).
Предположим, что есть два региона. В первом регионе T (treatment) вводится новая медицинская программа, а во втором регионе C (control) — нет. При этом и в регионе T, и в регионе C есть две группы граждан — A и B. Воздействию новой программы подвергается только группа B в регионе T. Кроме того, как и в стандартном методе DiD, есть два временных периода — Pre (до введения новой программы в регионе T) и Post (после введения новой программы в регионе T).
Цель исследователя — оценить средний эффект от внедрения программы на интересующие полисимейкеров показатели здоровья для подвергшихся воздействию.
➡️ Для этого можно, во-первых, сравнить изменение показателей здоровья в группах A и B только в регионе T (в котором вводится программа). Это обычный метод DiD. Но такая оценка получится смещенной, если в регионе T программа приводит к появлению внешних эффектов, которые действуют на группу A, или если есть разнонаправленные тренды в целевой переменной, которые связаны с характеристиками групп A и B (group-specific trends / shocks).
➡️ Во-вторых, можно сравнить изменение показателей здоровья только в группе B, но для штатов Т и С. Это опять обычный метод DiD. Но оценка получится смещенной, если в регионах T и C сильно различаются внешние экономические условия (state-specific trends / shocks), так, что даже без воздействия показатели здоровья для группы B будут меняться очень по-разному.
➡️ Однако можно предположить, что различия во внешних экономических условиях не повлияют на относительные результаты группы А и группы В в двух регионах, и оценить требуемый эффект. Метод тройной разности позволяет получить несмещенную оценку эффекта, даже если есть location-specific trends (относительно регионов T и C) и partition-specific trends (относительно групп A и B).
Сегодня поговорим про метод тройной разности (triple difference, TD difference-in-difference-in-differences, DDD).
Предположим, что есть два региона. В первом регионе T (treatment) вводится новая медицинская программа, а во втором регионе C (control) — нет. При этом и в регионе T, и в регионе C есть две группы граждан — A и B. Воздействию новой программы подвергается только группа B в регионе T. Кроме того, как и в стандартном методе DiD, есть два временных периода — Pre (до введения новой программы в регионе T) и Post (после введения новой программы в регионе T).
Цель исследователя — оценить средний эффект от внедрения программы на интересующие полисимейкеров показатели здоровья для подвергшихся воздействию.
➡️ Для этого можно, во-первых, сравнить изменение показателей здоровья в группах A и B только в регионе T (в котором вводится программа). Это обычный метод DiD. Но такая оценка получится смещенной, если в регионе T программа приводит к появлению внешних эффектов, которые действуют на группу A, или если есть разнонаправленные тренды в целевой переменной, которые связаны с характеристиками групп A и B (group-specific trends / shocks).
➡️ Во-вторых, можно сравнить изменение показателей здоровья только в группе B, но для штатов Т и С. Это опять обычный метод DiD. Но оценка получится смещенной, если в регионах T и C сильно различаются внешние экономические условия (state-specific trends / shocks), так, что даже без воздействия показатели здоровья для группы B будут меняться очень по-разному.
➡️ Однако можно предположить, что различия во внешних экономических условиях не повлияют на относительные результаты группы А и группы В в двух регионах, и оценить требуемый эффект. Метод тройной разности позволяет получить несмещенную оценку эффекта, даже если есть location-specific trends (относительно регионов T и C) и partition-specific trends (относительно групп A и B).
Telegram is a leading cloud-based instant messages platform. It became popular in recent years for its privacy, speed, voice and video quality, and other unmatched features over its main competitor Whatsapp. Choose quality over quantity. Remember that one high-quality post is better than five short publications of questionable value. The group’s featured image is of a Pepe frog yelling, often referred to as the “REEEEEEE” meme. Pepe the Frog was created back in 2005 by Matt Furie and has since become an internet symbol for meme culture and “degen” culture. Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau. Healing through screaming therapy
from us