ARTIFICIAL_STUPID Telegram 281
​​#statistics

Weighted Z-test для мета-анализа результатов экспериментов.

Мне попался на глаза пост от ebay про z-test для мета-анализа (спасибо коллегам). Так что сегодня поговорим про этот метод.

Итак. Предположим, что у нас есть несколько запусков одного теста (например, волны коммуникации со схожей механикой, либо повторный запуск какого-либо эксперимента).

У нас есть N тестов (например, N t-тестов для средних), для каждого из которых есть свое p-value, свое значение статистики и свой доверительный интервал. Мы думаем, что объединение разрозненных источников информации даст нам преимущество и позволить уточнить наши выводы, увеличив мощность полученного комбинированного теста.

Для one-sided теста у нас может использоваться Fishers method. Но в случае two-sided теста нам нужен другой способ. И тут на сцену выходит Z-test.

Мы можем скомбинировать наши p-values в комбинированный p-value, используя Z-статистики из каждого эксперимента и веса, которые получаются из выражения w_i = 1 / SE_i, где SE_i - это standart error для i-го эксперимента (формула построения доверительного интервала комбинированного эксперимента есть в исходном посте по ссылке в начале).

Соответственно, в такой постановке мы уже проверяем комбинированную гипотезу. И на ее основе решаем, что же получилось для группы тестов. А больший объем информации дает нам большую мощность эксперимента.

Какие тут плюсы и минусы?

Плюсы:
- Тест может комбинировать отдельные результаты тестов с разными размерами выборки;
- Полученная комбинация имеет большую мощность, чем каждый отдельный тест

Минусы:
- Тест предполагает нормальность распределения (не забываем о Z-статистике при его расчете);
- Тест чувствителен к весам. Соответственно, есть возможность того, что какой-то тест попросту перевесит все остальные;
- Комбинированный тест может быть сложнее к пониманию и реализации, чем единичный обычный проведенный тест
🔥6



tgoop.com/artificial_stupid/281
Create:
Last Update:

​​#statistics

Weighted Z-test для мета-анализа результатов экспериментов.

Мне попался на глаза пост от ebay про z-test для мета-анализа (спасибо коллегам). Так что сегодня поговорим про этот метод.

Итак. Предположим, что у нас есть несколько запусков одного теста (например, волны коммуникации со схожей механикой, либо повторный запуск какого-либо эксперимента).

У нас есть N тестов (например, N t-тестов для средних), для каждого из которых есть свое p-value, свое значение статистики и свой доверительный интервал. Мы думаем, что объединение разрозненных источников информации даст нам преимущество и позволить уточнить наши выводы, увеличив мощность полученного комбинированного теста.

Для one-sided теста у нас может использоваться Fishers method. Но в случае two-sided теста нам нужен другой способ. И тут на сцену выходит Z-test.

Мы можем скомбинировать наши p-values в комбинированный p-value, используя Z-статистики из каждого эксперимента и веса, которые получаются из выражения w_i = 1 / SE_i, где SE_i - это standart error для i-го эксперимента (формула построения доверительного интервала комбинированного эксперимента есть в исходном посте по ссылке в начале).

Соответственно, в такой постановке мы уже проверяем комбинированную гипотезу. И на ее основе решаем, что же получилось для группы тестов. А больший объем информации дает нам большую мощность эксперимента.

Какие тут плюсы и минусы?

Плюсы:
- Тест может комбинировать отдельные результаты тестов с разными размерами выборки;
- Полученная комбинация имеет большую мощность, чем каждый отдельный тест

Минусы:
- Тест предполагает нормальность распределения (не забываем о Z-статистике при его расчете);
- Тест чувствителен к весам. Соответственно, есть возможность того, что какой-то тест попросту перевесит все остальные;
- Комбинированный тест может быть сложнее к пониманию и реализации, чем единичный обычный проведенный тест

BY Artificial stupidity




Share with your friend now:
tgoop.com/artificial_stupid/281

View MORE
Open in Telegram


Telegram News

Date: |

Telegram desktop app: In the upper left corner, click the Menu icon (the one with three lines). Select “New Channel” from the drop-down menu. Select: Settings – Manage Channel – Administrators – Add administrator. From your list of subscribers, select the correct user. A new window will appear on the screen. Check the rights you’re willing to give to your administrator. Although some crypto traders have moved toward screaming as a coping mechanism, several mental health experts call this therapy a pseudoscience. The crypto community finds its way to engage in one or the other way and share its feelings with other fellow members. fire bomb molotov November 18 Dylan Hollingsworth yau ma tei Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.”
from us


Telegram Artificial stupidity
FROM American