BDSCIENCE_RU Telegram 620
📊Небольшие советы по обработке больших датасетов в Pandas от Google

Pandas — отличный инструмент для работы с небольшими наборами данных, обычно размером от двух до трех гигабайт.

Для наборов данных, превышающих этот порог, использование Pandas не рекомендуется. Это связано с тем, что если размер набора данных превышает доступную оперативную память, Pandas загружает полный набор данных в память перед обработкой. Проблемы с памятью могут возникнуть даже с меньшими наборами данных, поскольку предварительная обработка и изменение создают дубликаты DataFrame.

⚠️Вот несколько советов по эффективной обработке данных в Pandas:

Используйте эффективные типы данных: используйте более эффективные с точки зрения памяти типы данных (например, int32вместо int64, float32вместо float64), чтобы сократить использование памяти.
Загружать меньше данных: используйте use-colsпараметр для загрузки только необходимых столбцов, что сокращает потребление памяти.pd.read_csv()
Разделение на части: используйте chunksizeпараметр in для чтения набора данных меньшими порциями, обрабатывая каждую порцию итеративно.pd.read_csv()
Оптимизация dtypes Pandas: используйте astypeметод для преобразования столбцов в типы, более эффективно использующие память, после загрузки данных, если это уместно.
Распараллеливание Pandas с помощью Dask: используйте Dask, библиотеку параллельных вычислений, для масштабирования рабочих процессов Pandas до наборов данных, превышающих объем оперативной памяти, за счет использования параллельной обработки.

🖥Подробнее можно узнать тут



tgoop.com/bdscience_ru/620
Create:
Last Update:

📊Небольшие советы по обработке больших датасетов в Pandas от Google

Pandas — отличный инструмент для работы с небольшими наборами данных, обычно размером от двух до трех гигабайт.

Для наборов данных, превышающих этот порог, использование Pandas не рекомендуется. Это связано с тем, что если размер набора данных превышает доступную оперативную память, Pandas загружает полный набор данных в память перед обработкой. Проблемы с памятью могут возникнуть даже с меньшими наборами данных, поскольку предварительная обработка и изменение создают дубликаты DataFrame.

⚠️Вот несколько советов по эффективной обработке данных в Pandas:

Используйте эффективные типы данных: используйте более эффективные с точки зрения памяти типы данных (например, int32вместо int64, float32вместо float64), чтобы сократить использование памяти.
Загружать меньше данных: используйте use-colsпараметр для загрузки только необходимых столбцов, что сокращает потребление памяти.pd.read_csv()
Разделение на части: используйте chunksizeпараметр in для чтения набора данных меньшими порциями, обрабатывая каждую порцию итеративно.pd.read_csv()
Оптимизация dtypes Pandas: используйте astypeметод для преобразования столбцов в типы, более эффективно использующие память, после загрузки данных, если это уместно.
Распараллеливание Pandas с помощью Dask: используйте Dask, библиотеку параллельных вычислений, для масштабирования рабочих процессов Pandas до наборов данных, превышающих объем оперативной памяти, за счет использования параллельной обработки.

🖥Подробнее можно узнать тут

BY Big Data Science [RU]




Share with your friend now:
tgoop.com/bdscience_ru/620

View MORE
Open in Telegram


Telegram News

Date: |

As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN. How to create a business channel on Telegram? (Tutorial) The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. Ng Man-ho, a 27-year-old computer technician, was convicted last month of seven counts of incitement charges after he made use of the 100,000-member Chinese-language channel that he runs and manages to post "seditious messages," which had been shut down since August 2020.
from us


Telegram Big Data Science [RU]
FROM American