BIGDATA_1 Telegram 1001
Media is too big
VIEW IN TELEGRAM
PhysX-3D: Physical-Grounded 3D Asset Generation

3D-моделирование переходит из виртуального в физический мир. Существующие методы генерации 3D в основном сосредоточены на геометрии и текстурах, но игнорируют физически обоснованное моделирование. В результате, несмотря на быстрый прогресс в области генеративных 3D-моделей, синтезированные объекты часто лишены богатых и важных физических свойств, что ограничивает их применение в реальных задачах, таких как симуляции и embodied AI.

В качестве первого шага к решению этой проблемы мы предлагаем PhysX — сквозную парадигму генерации физически обоснованных 3D-объектов.

1. Чтобы преодолеть критический дефицит 3D-датасетов с физической аннотацией, мы представляем PhysXNet — первый датасет, систематически снабжённый физическими метками по пяти базовым измерениям: абсолютный масштаб, материал, аффордансы, кинематика и функциональное описание. Для этого мы разработали масштабируемый процесс аннотирования с участием человека, основанный на vision-language моделях, что позволяет эффективно создавать физически ориентированные объекты из исходных 3D-данных.

2. Кроме того, мы предлагаем PhysXGen — прямой фреймворк для генерации физически обоснованных 3D-объектов по изображениям, который внедряет физические знания в предобученное 3D-структурное пространство. В частности, PhysXGen использует двухветвевую архитектуру для явного моделирования скрытых связей между 3D-структурами и физическими свойствами, что позволяет получать 3D-объекты с правдоподобными физическими характеристиками при сохранении высокого качества геометрии.

Обширные эксперименты подтверждают превосходную производительность и высокую способность к обобщению предлагаемого подхода. Весь код, данные и модели будут опубликованы для поддержки будущих исследований в области генеративного физического ИИ.

➡️Github: https://github.com/ziangcao0312/PhysX-3D

➡️Paper: https://arxiv.org/pdf/2507.12465v1.pdf

➡️Dataset: https://huggingface.co/datasets/Caoza/PhysX-3D

👉 @bigdata_1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1👀1



tgoop.com/bigdata_1/1001
Create:
Last Update:

PhysX-3D: Physical-Grounded 3D Asset Generation

3D-моделирование переходит из виртуального в физический мир. Существующие методы генерации 3D в основном сосредоточены на геометрии и текстурах, но игнорируют физически обоснованное моделирование. В результате, несмотря на быстрый прогресс в области генеративных 3D-моделей, синтезированные объекты часто лишены богатых и важных физических свойств, что ограничивает их применение в реальных задачах, таких как симуляции и embodied AI.

В качестве первого шага к решению этой проблемы мы предлагаем PhysX — сквозную парадигму генерации физически обоснованных 3D-объектов.

1. Чтобы преодолеть критический дефицит 3D-датасетов с физической аннотацией, мы представляем PhysXNet — первый датасет, систематически снабжённый физическими метками по пяти базовым измерениям: абсолютный масштаб, материал, аффордансы, кинематика и функциональное описание. Для этого мы разработали масштабируемый процесс аннотирования с участием человека, основанный на vision-language моделях, что позволяет эффективно создавать физически ориентированные объекты из исходных 3D-данных.

2. Кроме того, мы предлагаем PhysXGen — прямой фреймворк для генерации физически обоснованных 3D-объектов по изображениям, который внедряет физические знания в предобученное 3D-структурное пространство. В частности, PhysXGen использует двухветвевую архитектуру для явного моделирования скрытых связей между 3D-структурами и физическими свойствами, что позволяет получать 3D-объекты с правдоподобными физическими характеристиками при сохранении высокого качества геометрии.

Обширные эксперименты подтверждают превосходную производительность и высокую способность к обобщению предлагаемого подхода. Весь код, данные и модели будут опубликованы для поддержки будущих исследований в области генеративного физического ИИ.

➡️Github: https://github.com/ziangcao0312/PhysX-3D

➡️Paper: https://arxiv.org/pdf/2507.12465v1.pdf

➡️Dataset: https://huggingface.co/datasets/Caoza/PhysX-3D

👉 @bigdata_1

BY BigData


Share with your friend now:
tgoop.com/bigdata_1/1001

View MORE
Open in Telegram


Telegram News

Date: |

Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group. For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data. With Bitcoin down 30% in the past week, some crypto traders have taken to Telegram to “voice” their feelings. Done! Now you’re the proud owner of a Telegram channel. The next step is to set up and customize your channel. Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN.
from us


Telegram BigData
FROM American