Warning: file_put_contents(aCache/aDaily/post/bigdatai/-1587-1588-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Big Data AI@bigdatai P.1588
BIGDATAI Telegram 1588
Forwarded from Machinelearning
🧠 Андрей Карпаты научил nanochat считать буквы - и объяснил, как расширять способности модели.

Карпаты показал, как добавить новую функцию в мини-LLM nanochat d32, чьи размеры он сравнил с «мозгом пчелы».

Он обучил модель считать, сколько раз буква r встречается в слове strawberry - и использовал этот пример, чтобы показать, как можно наделять маленькие языковые модели новыми навыками через синтетические задачи.

Он использует задачу SpellingBee, которая генерирует диалоги вида:
> «Сколько букв r в слове strawberry?»
и правильные ответы.

После этого модель дообучается (**SFT**) или проходит обучение с подкреплением (RL), чтобы закрепить навык.

Далее модель проходит дообучение (SFT) или обучение с подкреплением (RL), чтобы закрепить навык.

Карпаты объясняет, что для маленьких моделей важно продумывать всё до мелочей, как разнообразить запросы, как устроена токенизация и даже где ставить пробелы.

Он показывает, что рассуждения лучше разбивать на несколько шагов, тогда модель легче «понимает» задачу.

Nanochat решает задачу двумя способами:
логически, рассуждая пошагово,
— и через встроенный Python-интерпретатор, выполняя вычисления прямо внутри чата.

🧩 Идея в том, что даже крошечные LLM можно «научить думать», если правильно подготовить примеры и синтетические данные.

📘 Полный разбор: github.com/karpathy/nanochat/discussions/164

@ai_machinelearning_big_data

#AI #Karpathy #Nanochat #LLM #SFT #RL #MachineLearning #OpenSource
🔥61



tgoop.com/bigdatai/1588
Create:
Last Update:

🧠 Андрей Карпаты научил nanochat считать буквы - и объяснил, как расширять способности модели.

Карпаты показал, как добавить новую функцию в мини-LLM nanochat d32, чьи размеры он сравнил с «мозгом пчелы».

Он обучил модель считать, сколько раз буква r встречается в слове strawberry - и использовал этот пример, чтобы показать, как можно наделять маленькие языковые модели новыми навыками через синтетические задачи.

Он использует задачу SpellingBee, которая генерирует диалоги вида:
> «Сколько букв r в слове strawberry?»
и правильные ответы.

После этого модель дообучается (**SFT**) или проходит обучение с подкреплением (RL), чтобы закрепить навык.

Далее модель проходит дообучение (SFT) или обучение с подкреплением (RL), чтобы закрепить навык.

Карпаты объясняет, что для маленьких моделей важно продумывать всё до мелочей, как разнообразить запросы, как устроена токенизация и даже где ставить пробелы.

Он показывает, что рассуждения лучше разбивать на несколько шагов, тогда модель легче «понимает» задачу.

Nanochat решает задачу двумя способами:
логически, рассуждая пошагово,
— и через встроенный Python-интерпретатор, выполняя вычисления прямо внутри чата.

🧩 Идея в том, что даже крошечные LLM можно «научить думать», если правильно подготовить примеры и синтетические данные.

📘 Полный разбор: github.com/karpathy/nanochat/discussions/164

@ai_machinelearning_big_data

#AI #Karpathy #Nanochat #LLM #SFT #RL #MachineLearning #OpenSource

BY Big Data AI





Share with your friend now:
tgoop.com/bigdatai/1588

View MORE
Open in Telegram


Telegram News

Date: |

ZDNET RECOMMENDS With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces. Hashtags
from us


Telegram Big Data AI
FROM American