BUILDING_SINGULARITY Telegram 17
Retrieval-based NLP

Классный пост от Stanford AI Lab. Приводят аргументы, почему retrieval-based подход в NLP это круто. Ниже коротко их тезисы.

Проблемы текущих моделей:
- Гигантские - тяжело, долго и дорого обучать и применять
- Сложно обновлять их знания, требуется дорогостоящее дообучение (модели же гигантские)
- Модель - black box. Неясно, какой документ повлиял на её ответ. А может она вообще сгенерировала ложный факт

Как retrieval-based подход чинит это:
- Разъединяет способность манипулировать (понимать и использовать) текстом и запоминание фактов. Хранение фактов в индексе, а не неявно в весах, позволяет с меньшим числом параметров получать то же качество. Кстати, вот цитата из недавнего поста от DeepMind про их retrieval-based модель RETRO: “7.5 billion parameter RETRO model outperforms the 175 billion parameter Jurassic-1 on 10 out of 16 datasets and outperforms the 280B Gopher on 9 out of 16 datasets”
- Адаптировать модель к новым фактам - просто обновить индекс
- Можно видеть, на основе какого документа был сгенерирован ответ

В посте нет про проблемы retrieval-based NLP, поэтому накину)
- Нужна не только способность манипулировать текстом, но и способность искать информацию в индексе. То есть, вместо одной модели получается как минимум две
- Как понять, что документ был использован, а не проигнорирован? Проблема интерпретации все ещё остается
- Ну и главная проблема для практиков: пока нет способа завести на любой задаче из коробки и получить профит. Значит, есть над чем работать)
👍4🤔2🔥1



tgoop.com/building_singularity/17
Create:
Last Update:

Retrieval-based NLP

Классный пост от Stanford AI Lab. Приводят аргументы, почему retrieval-based подход в NLP это круто. Ниже коротко их тезисы.

Проблемы текущих моделей:
- Гигантские - тяжело, долго и дорого обучать и применять
- Сложно обновлять их знания, требуется дорогостоящее дообучение (модели же гигантские)
- Модель - black box. Неясно, какой документ повлиял на её ответ. А может она вообще сгенерировала ложный факт

Как retrieval-based подход чинит это:
- Разъединяет способность манипулировать (понимать и использовать) текстом и запоминание фактов. Хранение фактов в индексе, а не неявно в весах, позволяет с меньшим числом параметров получать то же качество. Кстати, вот цитата из недавнего поста от DeepMind про их retrieval-based модель RETRO: “7.5 billion parameter RETRO model outperforms the 175 billion parameter Jurassic-1 on 10 out of 16 datasets and outperforms the 280B Gopher on 9 out of 16 datasets”
- Адаптировать модель к новым фактам - просто обновить индекс
- Можно видеть, на основе какого документа был сгенерирован ответ

В посте нет про проблемы retrieval-based NLP, поэтому накину)
- Нужна не только способность манипулировать текстом, но и способность искать информацию в индексе. То есть, вместо одной модели получается как минимум две
- Как понять, что документ был использован, а не проигнорирован? Проблема интерпретации все ещё остается
- Ну и главная проблема для практиков: пока нет способа завести на любой задаче из коробки и получить профит. Значит, есть над чем работать)

BY Приближаем сингулярность




Share with your friend now:
tgoop.com/building_singularity/17

View MORE
Open in Telegram


Telegram News

Date: |

A new window will come up. Enter your channel name and bio. (See the character limits above.) Click “Create.” How to create a business channel on Telegram? (Tutorial) As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” In handing down the sentence yesterday, deputy judge Peter Hui Shiu-keung of the district court said that even if Ng did not post the messages, he cannot shirk responsibility as the owner and administrator of such a big group for allowing these messages that incite illegal behaviors to exist. "Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn.
from us


Telegram Приближаем сингулярность
FROM American