tgoop.com/cme_channel/3512
Last Update:
Первая часть шестнадцатой проблемы Гильберта содержит в себе вопрос о взаимном расположении овалов вещественной алгебраической кривой на вещественной проективной плоскости -- у нас все кривые вещественны сейчас. Если кривая задана однородным многочленом P(x,y,z)=0 и степень многочлена P равна n, то число ее компонент связности не больше 1/2(n-1)(n-2)+1. Это теорема Харнака, Харнак же построил и пример максимальной кривой степени n.
Насколько я понимаю, эта задача Гильберта -- какие "картинки" могут реализовываться кривыми данной степени -- специалистами признается безнадежной. Для степени 8 максимальная кривая состоит из 22 овалов и осталось реализовать или доказать что невозможно реализовать 6 случаев. И за последние двадцать лет прогресса нет. А с большими степенями все совсем плохо.
Тем самым, следующая теорема Г.Михалкина выглядит совершенно удивительной.
Пусть есть максимальная кривая степени n. А кроме того на проективной плоскости заданы три прямые (не проходящие через одну точку) -- например "оси координат и бесконечноудаленная прямая". Кривая называется максимальной по отношению к этой тройке прямых, если у этой кривой есть компонента, на которой можно выбрать три непересекающиеся дуги, каждая из которых пересекает свою прямую в n точках. (рисунки в комментариях и статье Михалкина https://arxiv.org/pdf/math/0010018.pdf )
Теорема Михалкина говорит, что такая максимальная кривая, максимальная по отношению к трем прямым -- одна (с точностью до гомеоморфизма проективной плоскости). И это та кривая, которую нашел еще Харнак! Очень красивая -- и по формулировке и по доказательству теорема, ради таких теорем стоит изучать математику.
А в вещественной алгебраической геометрии много еще красивого.
BY Непрерывное математическое образование
Share with your friend now:
tgoop.com/cme_channel/3512