DATA_MATH Telegram 712
Forwarded from Machinelearning
📌 PyTorch: новые инструменты для для экономии памяти при обучении моделей.

PyTorch представил усовершенствованные методы Activation Checkpointing (AC), цель которых - снижение потребления памяти при обучении.

Традиционный подход в eager mode сохраняет промежуточные активации для обратного прохода, что зачастую приводит к значительному расходу ресурсов. AC позволяет не сохранять эти тензоры, а вычислять их заново при необходимости, тем самым жертвуя вычислительным временем ради экономии памяти.

Новая техника – Selective Activation Checkpoint (SAC). В отличие от обычного AC, который затрагивает всю выбранную область, SAC дает гранулярный контроль над тем, какие операции следует пересчитывать, а какие – сохранять. Это достигается за счет использования policy_fn, определяющей, нужно ли сохранять результаты конкретной операции. SAC будет полезен для избегания перевычисления ресурсоемких операций, например, матричных умножений.

Для torch.compile стала доступна Memory Budget API. Эта функция автоматически применяет SAC с оптимальной политикой, исходя из заданного пользователем бюджета памяти (от 0 до 1). Бюджет 0 соответствует обычному AC, а 1 – поведению torch.compile по умолчанию.

🔜 Читать подробную статью в блоге Pytorch


@ai_machinelearning_big_data

#AI #ML #Pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍53



tgoop.com/data_math/712
Create:
Last Update:

📌 PyTorch: новые инструменты для для экономии памяти при обучении моделей.

PyTorch представил усовершенствованные методы Activation Checkpointing (AC), цель которых - снижение потребления памяти при обучении.

Традиционный подход в eager mode сохраняет промежуточные активации для обратного прохода, что зачастую приводит к значительному расходу ресурсов. AC позволяет не сохранять эти тензоры, а вычислять их заново при необходимости, тем самым жертвуя вычислительным временем ради экономии памяти.

Новая техника – Selective Activation Checkpoint (SAC). В отличие от обычного AC, который затрагивает всю выбранную область, SAC дает гранулярный контроль над тем, какие операции следует пересчитывать, а какие – сохранять. Это достигается за счет использования policy_fn, определяющей, нужно ли сохранять результаты конкретной операции. SAC будет полезен для избегания перевычисления ресурсоемких операций, например, матричных умножений.

Для torch.compile стала доступна Memory Budget API. Эта функция автоматически применяет SAC с оптимальной политикой, исходя из заданного пользователем бюджета памяти (от 0 до 1). Бюджет 0 соответствует обычному AC, а 1 – поведению torch.compile по умолчанию.

🔜 Читать подробную статью в блоге Pytorch


@ai_machinelearning_big_data

#AI #ML #Pytorch

BY Математика Дата саентиста





Share with your friend now:
tgoop.com/data_math/712

View MORE
Open in Telegram


Telegram News

Date: |

Telegram channels fall into two types: 4How to customize a Telegram channel? "Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn. Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. How to Create a Private or Public Channel on Telegram?
from us


Telegram Математика Дата саентиста
FROM American