DATA_MATH Telegram 823
Forwarded from Machinelearning
🌟 Hierarchical Reasoning Model: иерархическая модель рассуждений, имитирующая работу мозга человека.

Hierarchical Reasoning Model, (HRM) - рекуррентная архитектура, которая черпает вдохновение в принципах работы человеческого мозга. В ее основе лежат 2 взаимозависимых рекуррентных модуля:

🟢Первый, высокоуровневый модуль (H-модуль), отвечает за медленное, абстрактное планирование, подобно тета-волнам в мозге.

🟢Второй, низкоуровневый модуль (L-модуль), занимается быстрыми и детализированными вычислениями, аналогично гамма-волнам.

Эта структура дает модели достигать вычислительной глубины, необходимой для сложных рассуждений, при этом сохраняя стабильность и эффективность во время обучения, чего так не хватает стандартным трансформерам.

🟡Взаимодействие модулей назвали "Иерархической конвергенцией".

Процесс кардинально отличается от того, что происходит в обычных рекуррентных сетях, которые склонны к преждевременной сходимости, когда их скрытое состояние быстро стабилизируется, и дальнейшие вычисления практически прекращаются. В HRM все иначе:

🟠Сначала быстрый L-модуль выполняет серию итераций, находя локальное равновесие для текущего шага задачи. Его итоговое состояние передается медленному H-модулю.

🟠H-модуль, в свою очередь, осмысливает полученный результат, выполняет один шаг собственного, более абстрактного обновления и задает совершенно новый контекст для L-модуля.

Таким образом, вычислительный путь низкоуровневого модуля перезапускается, направляя его к новой точке локального равновесия. Механизм не дает системе застрять и позволяет ей последовательно выполнять множество различных, но взаимосвязанных этапов решения, выстраивая длинные логические цепочки.

Тестовая модель HRM с 27 млн. параметров, обученная всего на 1000 примерах без какого-либо претрейна или CoT-пар, показала неожиданно высокие результаты .

На задачах, требующих глубокого поиска и перебора вариантов ( Sudoku-Extreme ) и поиск оптимального пути ( Maze 30x30 ), HRM достигла почти идеальной точности, а вот CoT-методы полностью провалились с результатом 0%.

На бенчмарке ARC-AGI-1, HRM показывает точность в 40.3%. Для сравнения, o3-mini-high показала 34.5%, а Claude 3.7 с контекстом 8K - 21.2%.

▶️ Веса моделей для самостоятельного воспроизведения тестов:

🟢ARC-AGI-2;
🟢Sudoku 9x9 Extreme (1000 examples);
🟢Maze 30x30 Hard (1000 examples);


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Arxiv
🖥Github


@ai_machinelearning_big_data

#AI #ML #HRM #SapientInc
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥6🥰2👍1🤔1



tgoop.com/data_math/823
Create:
Last Update:

🌟 Hierarchical Reasoning Model: иерархическая модель рассуждений, имитирующая работу мозга человека.

Hierarchical Reasoning Model, (HRM) - рекуррентная архитектура, которая черпает вдохновение в принципах работы человеческого мозга. В ее основе лежат 2 взаимозависимых рекуррентных модуля:

🟢Первый, высокоуровневый модуль (H-модуль), отвечает за медленное, абстрактное планирование, подобно тета-волнам в мозге.

🟢Второй, низкоуровневый модуль (L-модуль), занимается быстрыми и детализированными вычислениями, аналогично гамма-волнам.

Эта структура дает модели достигать вычислительной глубины, необходимой для сложных рассуждений, при этом сохраняя стабильность и эффективность во время обучения, чего так не хватает стандартным трансформерам.

🟡Взаимодействие модулей назвали "Иерархической конвергенцией".

Процесс кардинально отличается от того, что происходит в обычных рекуррентных сетях, которые склонны к преждевременной сходимости, когда их скрытое состояние быстро стабилизируется, и дальнейшие вычисления практически прекращаются. В HRM все иначе:

🟠Сначала быстрый L-модуль выполняет серию итераций, находя локальное равновесие для текущего шага задачи. Его итоговое состояние передается медленному H-модулю.

🟠H-модуль, в свою очередь, осмысливает полученный результат, выполняет один шаг собственного, более абстрактного обновления и задает совершенно новый контекст для L-модуля.

Таким образом, вычислительный путь низкоуровневого модуля перезапускается, направляя его к новой точке локального равновесия. Механизм не дает системе застрять и позволяет ей последовательно выполнять множество различных, но взаимосвязанных этапов решения, выстраивая длинные логические цепочки.

Тестовая модель HRM с 27 млн. параметров, обученная всего на 1000 примерах без какого-либо претрейна или CoT-пар, показала неожиданно высокие результаты .

На задачах, требующих глубокого поиска и перебора вариантов ( Sudoku-Extreme ) и поиск оптимального пути ( Maze 30x30 ), HRM достигла почти идеальной точности, а вот CoT-методы полностью провалились с результатом 0%.

На бенчмарке ARC-AGI-1, HRM показывает точность в 40.3%. Для сравнения, o3-mini-high показала 34.5%, а Claude 3.7 с контекстом 8K - 21.2%.

▶️ Веса моделей для самостоятельного воспроизведения тестов:

🟢ARC-AGI-2;
🟢Sudoku 9x9 Extreme (1000 examples);
🟢Maze 30x30 Hard (1000 examples);


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Arxiv
🖥Github


@ai_machinelearning_big_data

#AI #ML #HRM #SapientInc

BY Математика Дата саентиста





Share with your friend now:
tgoop.com/data_math/823

View MORE
Open in Telegram


Telegram News

Date: |

As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces. Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. Content is editable within two days of publishing How to create a business channel on Telegram? (Tutorial) Image: Telegram.
from us


Telegram Математика Дата саентиста
FROM American