Telegram Web
Неопределённый интеграл

Неопределённый интеграл. Свойства неопределённых интегралов.
Замена переменной в неопределённом интеграле.
Интегрирование по частям в неопределённом интеграле. Часть 1
Интегрирование по частям в неопределённом интеграле. Часть 2
Интегрирование простейших рациональных дробей
Примеры интегрирования простейших рациональных дробей III и IV типов
Сведения из алгебры, необходимые для интегрирования рациональных дробей
Интегрирование правильных рациональных дробей (корни знаменателя действительные и простые)
Интегрирование правильных рациональных дробей (корни знаменателя действительные и кратные)
Интегрирование правильных рациональных дробей (корни знаменателя комплексные некратные)

⭐️ источник
👍103🔥2
🖥 Manim — это мощная библиотека на Python для создания анимаций математических и научных концепций!

💡 Она позволяет визуализировать сложные идеи с высокой точностью и гибкостью, используя код для определения сцен, объектов и их взаимодействия. Manim широко используется в образовательных целях и для создания объясняющих видео. Библиотека поддерживает анимацию графиков, формул, геометрических фигур и других визуальных элементов.

🔐 Лицензия: MIT

🖥 Github

@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥13👍113
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔎 Depth Anything — это передовая технология оценки глубины, использующая монокуляр (одну камера).

Однако у этой технологии есть проблема с временной несогласованности в видео, что значительно ограничивает её практическое применение.

😩Существующие методы могут улучшить согласованность видео, но они применимы к коротким видео (менее 10 секунд) и требуют компромисса между качеством и эффективностью съёмки.

🤗 Video Depth Anything — модель, которая обеспечивает высококачественную и последовательную оценку глубины видео без ущерба для их эффективности.

Она построена на основе Depth Anything V2 и обладает мощным пространственно-временным управлением.

🍪 Разработанная на основе совместного набора данных о глубине видео и дешевых немаркированных изображений, эта модель представляет эффективную стратегию оценки длинного видео на основе ключевых кадров. Ограничения на градиенты глубины устраняют необходимость в дополнительных предварительных данных.

🖥 Эксперименты показали, что Video Depth Anything обрабатывает видео любой длины без потери качества, последовательности, что устанавливает новый уровень в оценке глубины видео с нулевой съемкой.

Доступны модели различных масштабов, при этом самая маленькая из них обеспечивает производительность в реальном времени со скоростью 30 кадров в секунду 🔥👍

Начало работы:

git clone https://github.com/DepthAnything/Video-Depth-Anything
cd Video-Depth-Anything
pip install -r requirements.txt


Лицензирование: Apache 2.0

GitHub
Paper
Model Small
Model Large
Demo

@ai_machinelearning_big_data


#DepthAnything #opensource #ml #depthestimation #videodepth
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥3
Forwarded from Machinelearning
📕 Think Stats: Бесплатная книга по статистике.

Think Stats - это введение в теорию вероятностей и статистику для Python программистов и датасаентистов.

Каждая глава
доступна в виде блокнота Jupyter ноутбука, в котором можно запускать код и решать упражнения

⭐️ Книга доступна по лицензии Creative Commons, что означает, что вы можете свободно читать, копировать и распространять при условии указания ссылки на источник и не использования в коммерческих целях.

Книга
Github

@ai_machinelearning_big_data


#freebook #ml #probability #book #opensource #practice #книганедели
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥96👍2
Lots of math for CS & ML. Looks pretty interesting.

📚 Book
❤‍🔥52👍1🔥1🤯1
Forwarded from Machinelearning
⚡️ Мл сообщество активно обсуждает успехи Китая и DeepSeek-R1, в частности, в гонке за доминирование на рынке ИИ.

Релиз R1 и новости об инвестировании в развитие отрасли, вызвали падение акций американских ИТ-гигантов на бирже NASDAQ.

Но помимо R1 в этом месяце разработчики из Китая выпустили еще очень много интересных моделей 🔥 Китай набирает очень серьезные обороты,

Давайте посмотрим на список самых ярких релизов из Поднебесной за январь:

LLM:
InternLM3-8B-Instruct
MiniMax-Text-01
RWKV-7 RNN + трансформер 👀
Собственно сам DeepSeek-R1
Baichuan-M1-14B медицинский LLM 🩺
Qwen2.5-Math-PRM от Alibaba
Qwen2.5 -1M


Модели кодинга:
Tare от BytedanceTalk

TTS модели синтеза и генерации речи:
T2A-01-HD от MiniMax AI
LLaSA

МЛЛМ:
Kimi k1.5 от Moonshot AI
MiniCPM-o-2_6 от OpenBMB
Sa2VA-4B от ByteDanceOSS
VideoLLaMA 3 от Alibaba DAMO
LLaVA-Mini от Китайской академии наук

Hunyuan-7B от TXhunyuan
Hunyuan 3D 2.0

ИИ-агенты:
UI-TARS от ByteDanceOSS
GLM-PC

Датасеты:
Fineweb-Edu-Chinese-V2.1
Multimodal_textbook от Alibaba
MME-Finance от Hithink AI
GameFactory от KwaiVGI

📌 Полный список Релизов

@ai_machinelearning_big_data


#ai #ml #digest #china #deepseek #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍63🥰3
Видеолекции, UC Berkeley CS 194-196 / 294-196 Large Language Model Agents fall 2024, by Dawn Song & Xinyun Chen

https://rdi.berkeley.edu/llm-agents/f24

@data_math
4🔥4👍3
2025/07/13 20:11:04
Back to Top
HTML Embed Code: