DATA_NOTES Telegram 100
Forwarded from Ilya Gusev
Компиляция нескольких постов про то, что читать про ML/NLP/LLM:

Обучающие материалы 🗒
- https://habr.com/ru/articles/774844/
- https://lena-voita.github.io/nlp_course.html
- https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
- https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
- https://huggingface.co/docs/transformers/perf_train_gpu_one

Блоги 🍿
- https://huggingface.co/blog/
- https://blog.eleuther.ai/
- https://lilianweng.github.io/
- https://oobabooga.github.io/blog/
- https://kipp.ly/
- https://mlu-explain.github.io/
- https://yaofu.notion.site/Yao-Fu-s-Blog-b536c3d6912149a395931f1e871370db

Прикладные курсы 👴
- https://github.com/yandexdataschool/nlp_course
- https://github.com/DanAnastasyev/DeepNLP-Course
(Я давно не проходил вообще никакие курсы, если есть что-то новое и хорошее - пишите!)

Каналы 🚫
- https://www.tgoop.com/gonzo_ML
- https://www.tgoop.com/izolenta_mebiusa
- https://www.tgoop.com/tech_priestess
- https://www.tgoop.com/rybolos_channel
- https://www.tgoop.com/j_links
- https://www.tgoop.com/lovedeathtransformers
- https://www.tgoop.com/seeallochnaya
- https://www.tgoop.com/doomgrad
- https://www.tgoop.com/nadlskom
- https://www.tgoop.com/dlinnlp
(Забыл добавить вас? Напишите в личку, список составлялся по тем каналам, что я сам читаю)

Чаты 😁
- https://www.tgoop.com/betterdatacommunity
- https://www.tgoop.com/natural_language_processing
- https://www.tgoop.com/LLM_RNN_RWKV
- https://www.tgoop.com/ldt_chat

Основные статьи 😘
- Word2Vec: Mikolov et al., Efficient Estimation of Word Representations in Vector Space https://arxiv.org/pdf/1301.3781.pdf
- FastText: Bojanowski et al., Enriching Word Vectors with Subword Information https://arxiv.org/pdf/1607.04606.pdf
- Attention: Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate https://arxiv.org/abs/1409.0473
- Transformers: Vaswani et al., Attention Is All You Need https://arxiv.org/abs/1706.03762
- BERT: Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/abs/1810.0480
- GPT-2, Radford et al., Language Models are Unsupervised Multitask Learners https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
- GPT-3, Brown et al, Language Models are Few-Shot Learners https://arxiv.org/abs/2005.14165
- LaBSE, Feng et al., Language-agnostic BERT Sentence Embedding https://arxiv.org/abs/2007.01852
- CLIP, Radford et al., Learning Transferable Visual Models From Natural Language Supervision https://arxiv.org/abs/2103.00020
- RoPE, Su et al., RoFormer: Enhanced Transformer with Rotary Position Embedding https://arxiv.org/abs/2104.09864
- LoRA, Hu et al., LoRA: Low-Rank Adaptation of Large Language Models https://arxiv.org/abs/2106.09685
- InstructGPT, Ouyang et al., Training language models to follow instructions with human feedback https://arxiv.org/abs/2203.02155
- Scaling laws, Hoffmann et al., Training Compute-Optimal Large Language Models https://arxiv.org/abs/2203.15556
- FlashAttention, Dao et al., FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness https://arxiv.org/abs/2205.14135
- NLLB, NLLB team, No Language Left Behind: Scaling Human-Centered Machine Translation https://arxiv.org/abs/2207.04672
- Q8, Dettmers et al., LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale https://arxiv.org/abs/2208.07339
- Self-instruct, Wang et al., Self-Instruct: Aligning Language Models with Self-Generated Instructions https://arxiv.org/abs/2212.10560
- Alpaca, Taori et al., Alpaca: A Strong, Replicable Instruction-Following Model https://crfm.stanford.edu/2023/03/13/alpaca.html
- LLaMA, Touvron, et al., LLaMA: Open and Efficient Foundation Language Models https://arxiv.org/abs/2302.13971
Please open Telegram to view this post
VIEW IN TELEGRAM
🙏1



tgoop.com/data_notes/100
Create:
Last Update:

Компиляция нескольких постов про то, что читать про ML/NLP/LLM:

Обучающие материалы 🗒
- https://habr.com/ru/articles/774844/
- https://lena-voita.github.io/nlp_course.html
- https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
- https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
- https://huggingface.co/docs/transformers/perf_train_gpu_one

Блоги 🍿
- https://huggingface.co/blog/
- https://blog.eleuther.ai/
- https://lilianweng.github.io/
- https://oobabooga.github.io/blog/
- https://kipp.ly/
- https://mlu-explain.github.io/
- https://yaofu.notion.site/Yao-Fu-s-Blog-b536c3d6912149a395931f1e871370db

Прикладные курсы 👴
- https://github.com/yandexdataschool/nlp_course
- https://github.com/DanAnastasyev/DeepNLP-Course
(Я давно не проходил вообще никакие курсы, если есть что-то новое и хорошее - пишите!)

Каналы 🚫
- https://www.tgoop.com/gonzo_ML
- https://www.tgoop.com/izolenta_mebiusa
- https://www.tgoop.com/tech_priestess
- https://www.tgoop.com/rybolos_channel
- https://www.tgoop.com/j_links
- https://www.tgoop.com/lovedeathtransformers
- https://www.tgoop.com/seeallochnaya
- https://www.tgoop.com/doomgrad
- https://www.tgoop.com/nadlskom
- https://www.tgoop.com/dlinnlp
(Забыл добавить вас? Напишите в личку, список составлялся по тем каналам, что я сам читаю)

Чаты 😁
- https://www.tgoop.com/betterdatacommunity
- https://www.tgoop.com/natural_language_processing
- https://www.tgoop.com/LLM_RNN_RWKV
- https://www.tgoop.com/ldt_chat

Основные статьи 😘
- Word2Vec: Mikolov et al., Efficient Estimation of Word Representations in Vector Space https://arxiv.org/pdf/1301.3781.pdf
- FastText: Bojanowski et al., Enriching Word Vectors with Subword Information https://arxiv.org/pdf/1607.04606.pdf
- Attention: Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate https://arxiv.org/abs/1409.0473
- Transformers: Vaswani et al., Attention Is All You Need https://arxiv.org/abs/1706.03762
- BERT: Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/abs/1810.0480
- GPT-2, Radford et al., Language Models are Unsupervised Multitask Learners https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
- GPT-3, Brown et al, Language Models are Few-Shot Learners https://arxiv.org/abs/2005.14165
- LaBSE, Feng et al., Language-agnostic BERT Sentence Embedding https://arxiv.org/abs/2007.01852
- CLIP, Radford et al., Learning Transferable Visual Models From Natural Language Supervision https://arxiv.org/abs/2103.00020
- RoPE, Su et al., RoFormer: Enhanced Transformer with Rotary Position Embedding https://arxiv.org/abs/2104.09864
- LoRA, Hu et al., LoRA: Low-Rank Adaptation of Large Language Models https://arxiv.org/abs/2106.09685
- InstructGPT, Ouyang et al., Training language models to follow instructions with human feedback https://arxiv.org/abs/2203.02155
- Scaling laws, Hoffmann et al., Training Compute-Optimal Large Language Models https://arxiv.org/abs/2203.15556
- FlashAttention, Dao et al., FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness https://arxiv.org/abs/2205.14135
- NLLB, NLLB team, No Language Left Behind: Scaling Human-Centered Machine Translation https://arxiv.org/abs/2207.04672
- Q8, Dettmers et al., LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale https://arxiv.org/abs/2208.07339
- Self-instruct, Wang et al., Self-Instruct: Aligning Language Models with Self-Generated Instructions https://arxiv.org/abs/2212.10560
- Alpaca, Taori et al., Alpaca: A Strong, Replicable Instruction-Following Model https://crfm.stanford.edu/2023/03/13/alpaca.html
- LLaMA, Touvron, et al., LLaMA: Open and Efficient Foundation Language Models https://arxiv.org/abs/2302.13971

BY Data notes


Share with your friend now:
tgoop.com/data_notes/100

View MORE
Open in Telegram


Telegram News

Date: |

To edit your name or bio, click the Menu icon and select “Manage Channel.” Users are more open to new information on workdays rather than weekends. The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. Commenting about the court's concerns about the spread of false information related to the elections, Minister Fachin noted Brazil is "facing circumstances that could put Brazil's democracy at risk." During the meeting, the information technology secretary at the TSE, Julio Valente, put forward a list of requests the court believes will disinformation. The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be:
from us


Telegram Data notes
FROM American