DATA_SECRETS Telegram 7910
Sakana AI сделали опенсорсный аналог AlphaEvolve – ShinkaEvolve

Это фреймворк для оптимизации и разработки сложных алгоритмов и архитектур. И, так как Sakana везде пытаются применять идеи эволюции (см этот пост со списком их статей), здесь без этого тоже не обошлось. «Shinka» (進化) с японского и есть "эволюция".

Работает это как нечто среднее между обычным генетическим алгоритмом и LLM-ным поиском по дереву:

1. Система получает на вход Seed-программу и верификатор, который считает метрики качества (фитнес). На каждом шаге свежие полученные скрипты добавляются в единый архив (это наш "банк" родителей).

2. LLM тут выступает мутационным оператором: на каждом шаге из банка берутся один или два родителя, и модель предлагает какие-то изменения в их коде в одном из определенных режимов: diff-патч поверх родителя, полная перезапись, кроссовер (смешивание идей из двух программ). Кстати, LLM выбирается не всегда одна и та же: есть специальный многорукий бандит, который смотрит, кто чаще приносит улучшения на данном типе задач при приемлемой цене, и подстраивает приоритеты.

3. Полученных кандидатов прогоняют через верификатор, но сначала они проходят дополнительный фильтр novelty-rejection. Считаются эмбеддинги программы, проверяется похожесть на архив. Слишком похожие идеи отбраковываются ещё до рассчета метрик, это резко экономит время и деньги.


Оставшихся прогоняем через оценщика и лучших добавляем в архив. А дальше – все с начала. Кстати, в архиве есть «острова» (несколько независимых популяций). Если система совсем встает в тупик и разнообразие решений начинает падать – можно осуществить между ними миграцию. Интересный инженерный ход.

Тестировали в четырех разничных областях. Результаты занятные:

1. На задаче математической оптимизации всего за 150 сэмплов система вывела новое решение для задачи Circle Packing, превосходящее аналогичные подходы.

2. При проектировании ИИ-агента за ~75 поколений фреймворк "изобрел" трехчастную архитектуру, которая побила бейзлайн на AIME.

3. На задачках из спортивного программирования система добавила много полезных оптимизаций, и в итоге дотянула до уровня серебрянного медалиста.

4. И еще проверяли, насколько хорошо ShinkaEvolve сможет обучить другую LLM. Это самое интересное: примерно 30 поколений система билась с лоссом для MoE, и внезапно вывела функцию потерь, которая по эффективности превзошла многие популярные решения.

И главное: в отличие от AlphaEvolve воспользоваться фреймворком можно прямо сейчас и бесплатно. Код вот тут. Просто переписываете evaluate.py под вашу задачу, кладете initial.py и запускаете shinka_launch variant=experiment_name. Подробная инструкция тут.
🔥9329👍99🤩7🤯3😁1🗿1



tgoop.com/data_secrets/7910
Create:
Last Update:

Sakana AI сделали опенсорсный аналог AlphaEvolve – ShinkaEvolve

Это фреймворк для оптимизации и разработки сложных алгоритмов и архитектур. И, так как Sakana везде пытаются применять идеи эволюции (см этот пост со списком их статей), здесь без этого тоже не обошлось. «Shinka» (進化) с японского и есть "эволюция".

Работает это как нечто среднее между обычным генетическим алгоритмом и LLM-ным поиском по дереву:

1. Система получает на вход Seed-программу и верификатор, который считает метрики качества (фитнес). На каждом шаге свежие полученные скрипты добавляются в единый архив (это наш "банк" родителей).

2. LLM тут выступает мутационным оператором: на каждом шаге из банка берутся один или два родителя, и модель предлагает какие-то изменения в их коде в одном из определенных режимов: diff-патч поверх родителя, полная перезапись, кроссовер (смешивание идей из двух программ). Кстати, LLM выбирается не всегда одна и та же: есть специальный многорукий бандит, который смотрит, кто чаще приносит улучшения на данном типе задач при приемлемой цене, и подстраивает приоритеты.

3. Полученных кандидатов прогоняют через верификатор, но сначала они проходят дополнительный фильтр novelty-rejection. Считаются эмбеддинги программы, проверяется похожесть на архив. Слишком похожие идеи отбраковываются ещё до рассчета метрик, это резко экономит время и деньги.


Оставшихся прогоняем через оценщика и лучших добавляем в архив. А дальше – все с начала. Кстати, в архиве есть «острова» (несколько независимых популяций). Если система совсем встает в тупик и разнообразие решений начинает падать – можно осуществить между ними миграцию. Интересный инженерный ход.

Тестировали в четырех разничных областях. Результаты занятные:

1. На задаче математической оптимизации всего за 150 сэмплов система вывела новое решение для задачи Circle Packing, превосходящее аналогичные подходы.

2. При проектировании ИИ-агента за ~75 поколений фреймворк "изобрел" трехчастную архитектуру, которая побила бейзлайн на AIME.

3. На задачках из спортивного программирования система добавила много полезных оптимизаций, и в итоге дотянула до уровня серебрянного медалиста.

4. И еще проверяли, насколько хорошо ShinkaEvolve сможет обучить другую LLM. Это самое интересное: примерно 30 поколений система билась с лоссом для MoE, и внезапно вывела функцию потерь, которая по эффективности превзошла многие популярные решения.

И главное: в отличие от AlphaEvolve воспользоваться фреймворком можно прямо сейчас и бесплатно. Код вот тут. Просто переписываете evaluate.py под вашу задачу, кладете initial.py и запускаете shinka_launch variant=experiment_name. Подробная инструкция тут.

BY Data Secrets






Share with your friend now:
tgoop.com/data_secrets/7910

View MORE
Open in Telegram


Telegram News

Date: |

6How to manage your Telegram channel? With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. Add the logo from your device. Adjust the visible area of your image. Congratulations! Now your Telegram channel has a face Click “Save”.! End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. Co-founder of NFT renting protocol Rentable World emiliano.eth shared the group Tuesday morning on Twitter, calling out the "degenerate" community, or crypto obsessives that engage in high-risk trading.
from us


Telegram Data Secrets
FROM American