๐๐ฒ๐น๐ผ๐ถ๐๐๐ฒ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ - ๐๐ผ๐ถ๐ป ๐ก๐ผ๐๐
Want to work on real projects from a top company?
๐จNo experience required๐จ
Nowโs your chance!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3WWMNLx
๐ข Share With Your Friends Who Needs this & Save for Later! ๐
Want to work on real projects from a top company?
๐จNo experience required๐จ
Nowโs your chance!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3WWMNLx
๐ข Share With Your Friends Who Needs this & Save for Later! ๐
What ๐ ๐ ๐ฐ๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐ are commonly asked in ๐ฑ๐ฎ๐๐ฎ ๐๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ถ๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐?
These are fair game in interviews at ๐๐๐ฎ๐ฟ๐๐๐ฝ๐, ๐ฐ๐ผ๐ป๐๐๐น๐๐ถ๐ป๐ด & ๐น๐ฎ๐ฟ๐ด๐ฒ ๐๐ฒ๐ฐ๐ต.
๐๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐
- Supervised vs. Unsupervised Learning
- Overfitting and Underfitting
- Cross-validation
- Bias-Variance Tradeoff
- Accuracy vs Interpretability
- Accuracy vs Latency
๐ ๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐
- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines
- K-Nearest Neighbors
- Naive Bayes
- Linear Regression
- Ridge and Lasso Regression
- K-Means Clustering
- Hierarchical Clustering
- PCA
๐ ๐ผ๐ฑ๐ฒ๐น๐ถ๐ป๐ด ๐ฆ๐๐ฒ๐ฝ๐
- EDA
- Data Cleaning (e.g. missing value imputation)
- Data Preprocessing (e.g. scaling)
- Feature Engineering (e.g. aggregation)
- Feature Selection (e.g. variable importance)
- Model Training (e.g. gradient descent)
- Model Evaluation (e.g. AUC vs Accuracy)
- Model Productionization
๐๐๐ฝ๐ฒ๐ฟ๐ฝ๐ฎ๐ฟ๐ฎ๐บ๐ฒ๐๐ฒ๐ฟ ๐ง๐๐ป๐ถ๐ป๐ด
- Grid Search
- Random Search
- Bayesian Optimization
๐ ๐ ๐๐ฎ๐๐ฒ๐
- [Capital One] Detect credit card fraudsters
- [Amazon] Forecast monthly sales
- [Airbnb] Estimate lifetime value of a guest
Like if you need similar content ๐๐
These are fair game in interviews at ๐๐๐ฎ๐ฟ๐๐๐ฝ๐, ๐ฐ๐ผ๐ป๐๐๐น๐๐ถ๐ป๐ด & ๐น๐ฎ๐ฟ๐ด๐ฒ ๐๐ฒ๐ฐ๐ต.
๐๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐
- Supervised vs. Unsupervised Learning
- Overfitting and Underfitting
- Cross-validation
- Bias-Variance Tradeoff
- Accuracy vs Interpretability
- Accuracy vs Latency
๐ ๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐
- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines
- K-Nearest Neighbors
- Naive Bayes
- Linear Regression
- Ridge and Lasso Regression
- K-Means Clustering
- Hierarchical Clustering
- PCA
๐ ๐ผ๐ฑ๐ฒ๐น๐ถ๐ป๐ด ๐ฆ๐๐ฒ๐ฝ๐
- EDA
- Data Cleaning (e.g. missing value imputation)
- Data Preprocessing (e.g. scaling)
- Feature Engineering (e.g. aggregation)
- Feature Selection (e.g. variable importance)
- Model Training (e.g. gradient descent)
- Model Evaluation (e.g. AUC vs Accuracy)
- Model Productionization
๐๐๐ฝ๐ฒ๐ฟ๐ฝ๐ฎ๐ฟ๐ฎ๐บ๐ฒ๐๐ฒ๐ฟ ๐ง๐๐ป๐ถ๐ป๐ด
- Grid Search
- Random Search
- Bayesian Optimization
๐ ๐ ๐๐ฎ๐๐ฒ๐
- [Capital One] Detect credit card fraudsters
- [Amazon] Forecast monthly sales
- [Airbnb] Estimate lifetime value of a guest
Like if you need similar content ๐๐
Forwarded from Finance, Trading & Stock Marketing
When you start making good money, do this:
1. Buy fewer clothes, but wear the highest quality.
2. Eat premium food, not junk.
3. Hire a helper for household chores. Buy back your time.
4. Upgrade your mattress. Sleep changes everything.
5. Invest in experiences, not just stuff.
6. Upgrade your financial adviser. The one who got you here wonโt get you to the next level.
7. Surround yourself with high-value people.
Small shifts. Big impact.
1. Buy fewer clothes, but wear the highest quality.
2. Eat premium food, not junk.
3. Hire a helper for household chores. Buy back your time.
4. Upgrade your mattress. Sleep changes everything.
5. Invest in experiences, not just stuff.
6. Upgrade your financial adviser. The one who got you here wonโt get you to the next level.
7. Surround yourself with high-value people.
Small shifts. Big impact.
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ถ๐๐ต ๐ง๐ต๐ฒ๐๐ฒ ๐๐ฅ๐๐ ๐ฌ๐ผ๐๐ง๐๐ฏ๐ฒ ๐ฉ๐ถ๐ฑ๐ฒ๐ผ๐!๐
Want to become a Data Analytics pro?๐ฅ
These tutorials simplify complex topics into easy-to-follow lessonsโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4k5x6vx
No more excusesโjust pure learning!โ ๏ธ
Want to become a Data Analytics pro?๐ฅ
These tutorials simplify complex topics into easy-to-follow lessonsโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4k5x6vx
No more excusesโjust pure learning!โ ๏ธ
How much Statistics must I know to become a Data Scientist?
This is one of the most common questions
Here are the must-know Statistics concepts every Data Scientist should know:
๐ฃ๐ฟ๐ผ๐ฏ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐
โ Bayes' Theorem & conditional probability
โ Permutations & combinations
โ Card & die roll problem-solving
๐๐ฒ๐๐ฐ๐ฟ๐ถ๐ฝ๐๐ถ๐๐ฒ ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐ & ๐ฑ๐ถ๐๐๐ฟ๐ถ๐ฏ๐๐๐ถ๐ผ๐ป๐
โ Mean, median, mode
โ Standard deviation and variance
โ Bernoulli's, Binomial, Normal, Uniform, Exponential distributions
๐๐ป๐ณ๐ฒ๐ฟ๐ฒ๐ป๐๐ถ๐ฎ๐น ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐
โ A/B experimentation
โ T-test, Z-test, Chi-squared tests
โ Type 1 & 2 errors
โ Sampling techniques & biases
โ Confidence intervals & p-values
โ Central Limit Theorem
โ Causal inference techniques
๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
โ Logistic & Linear regression
โ Decision trees & random forests
โ Clustering models
โ Feature engineering
โ Feature selection methods
โ Model testing & validation
โ Time series analysis
Join our WhatsApp channel for more Statistics Resources
๐๐
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
Like if you need similar content ๐๐
This is one of the most common questions
Here are the must-know Statistics concepts every Data Scientist should know:
๐ฃ๐ฟ๐ผ๐ฏ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐
โ Bayes' Theorem & conditional probability
โ Permutations & combinations
โ Card & die roll problem-solving
๐๐ฒ๐๐ฐ๐ฟ๐ถ๐ฝ๐๐ถ๐๐ฒ ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐ & ๐ฑ๐ถ๐๐๐ฟ๐ถ๐ฏ๐๐๐ถ๐ผ๐ป๐
โ Mean, median, mode
โ Standard deviation and variance
โ Bernoulli's, Binomial, Normal, Uniform, Exponential distributions
๐๐ป๐ณ๐ฒ๐ฟ๐ฒ๐ป๐๐ถ๐ฎ๐น ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐
โ A/B experimentation
โ T-test, Z-test, Chi-squared tests
โ Type 1 & 2 errors
โ Sampling techniques & biases
โ Confidence intervals & p-values
โ Central Limit Theorem
โ Causal inference techniques
๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
โ Logistic & Linear regression
โ Decision trees & random forests
โ Clustering models
โ Feature engineering
โ Feature selection methods
โ Model testing & validation
โ Time series analysis
Join our WhatsApp channel for more Statistics Resources
๐๐
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
Like if you need similar content ๐๐
10 great Python packages for Data Science not known to many:
1๏ธโฃ CleanLab
Cleanlab helps you clean data and labels by automatically detecting issues in a ML dataset.
2๏ธโฃ LazyPredict
A Python library that enables you to train, test, and evaluate multiple ML models at once using just a few lines of code.
3๏ธโฃ Lux
A Python library for quickly visualizing and analyzing data, providing an easy and efficient way to explore data.
4๏ธโฃ PyForest
A time-saving tool that helps in importing all the necessary data science libraries and functions with a single line of code.
5๏ธโฃ PivotTableJS
PivotTableJS lets you interactively analyse your data in Jupyter Notebooks without any code ๐ฅ
6๏ธโฃ Drawdata
Drawdata is a python library that allows you to draw a 2-D dataset of any shape in a Jupyter Notebook.
7๏ธโฃ black
The Uncompromising Code Formatter
8๏ธโฃ PyCaret
An open-source, low-code machine learning library in Python that automates the machine learning workflow.
9๏ธโฃ PyTorch-Lightning by LightningAI
Streamlines your model training, automates boilerplate code, and lets you focus on what matters: research & innovation.
๐ Streamlit
A framework for creating web applications for data science and machine learning projects, allowing for easy and interactive data viz & model deployment.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Like if you need similar content ๐๐
1๏ธโฃ CleanLab
Cleanlab helps you clean data and labels by automatically detecting issues in a ML dataset.
2๏ธโฃ LazyPredict
A Python library that enables you to train, test, and evaluate multiple ML models at once using just a few lines of code.
3๏ธโฃ Lux
A Python library for quickly visualizing and analyzing data, providing an easy and efficient way to explore data.
4๏ธโฃ PyForest
A time-saving tool that helps in importing all the necessary data science libraries and functions with a single line of code.
5๏ธโฃ PivotTableJS
PivotTableJS lets you interactively analyse your data in Jupyter Notebooks without any code ๐ฅ
6๏ธโฃ Drawdata
Drawdata is a python library that allows you to draw a 2-D dataset of any shape in a Jupyter Notebook.
7๏ธโฃ black
The Uncompromising Code Formatter
8๏ธโฃ PyCaret
An open-source, low-code machine learning library in Python that automates the machine learning workflow.
9๏ธโฃ PyTorch-Lightning by LightningAI
Streamlines your model training, automates boilerplate code, and lets you focus on what matters: research & innovation.
๐ Streamlit
A framework for creating web applications for data science and machine learning projects, allowing for easy and interactive data viz & model deployment.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Like if you need similar content ๐๐
๐๐/๐๐ ๐๐๐ฌ๐ข๐ ๐ง ๐
๐๐๐ ๐๐ง๐ฅ๐ข๐ง๐ ๐๐๐ฌ๐ญ๐๐ซ๐๐ฅ๐๐ฌ๐ฌ๐
Know The Roadmap To UX/UI Design in 2025
Learn Latest Tools & Trends & Become a successful UI/UX Designer
Eligibility :- Students , Freshers & Working Professionals
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐ ๐จ๐ซ ๐ ๐๐๐ ๐:-
https://pdlink.in/3CRl6NI
( Limited Slots๐โโ๏ธ )
Date & Time:- February 22, 2025, 7 PM
Know The Roadmap To UX/UI Design in 2025
Learn Latest Tools & Trends & Become a successful UI/UX Designer
Eligibility :- Students , Freshers & Working Professionals
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐ ๐จ๐ซ ๐ ๐๐๐ ๐:-
https://pdlink.in/3CRl6NI
( Limited Slots๐โโ๏ธ )
Date & Time:- February 22, 2025, 7 PM
Data Science Interview Questions
Question 1 : How would you approach building a recommendation system for personalized content on Facebook? Consider factors like scalability and user privacy.
- Answer: Building a recommendation system for personalized content on Facebook would involve collaborative filtering or content-based methods. Scalability can be achieved using distributed computing, and user privacy can be preserved through techniques like federated learning.
Question 2 : Describe a situation where you had to navigate conflicting opinions within your team. How did you facilitate resolution and maintain team cohesion?
- Answer: In navigating conflicting opinions within a team, I facilitated resolution through open communication, active listening, and finding common ground. Prioritizing team cohesion was key to achieving consensus.
Question 3 : How would you enhance the security of user data on Facebook, considering the evolving landscape of cybersecurity threats?
- Answer: Enhancing the security of user data on Facebook involves implementing robust encryption mechanisms, access controls, and regular security audits. Ensuring compliance with privacy regulations and proactive threat monitoring are essential.
Question 4 : Design a real-time notification system for Facebook, ensuring timely delivery of notifications to users across various platforms.
- Answer: Designing a real-time notification system for Facebook requires technologies like WebSocket for real-time communication and push notifications. Ensuring scalability and reliability through distributed systems is crucial for timely delivery.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
Question 1 : How would you approach building a recommendation system for personalized content on Facebook? Consider factors like scalability and user privacy.
- Answer: Building a recommendation system for personalized content on Facebook would involve collaborative filtering or content-based methods. Scalability can be achieved using distributed computing, and user privacy can be preserved through techniques like federated learning.
Question 2 : Describe a situation where you had to navigate conflicting opinions within your team. How did you facilitate resolution and maintain team cohesion?
- Answer: In navigating conflicting opinions within a team, I facilitated resolution through open communication, active listening, and finding common ground. Prioritizing team cohesion was key to achieving consensus.
Question 3 : How would you enhance the security of user data on Facebook, considering the evolving landscape of cybersecurity threats?
- Answer: Enhancing the security of user data on Facebook involves implementing robust encryption mechanisms, access controls, and regular security audits. Ensuring compliance with privacy regulations and proactive threat monitoring are essential.
Question 4 : Design a real-time notification system for Facebook, ensuring timely delivery of notifications to users across various platforms.
- Answer: Designing a real-time notification system for Facebook requires technologies like WebSocket for real-time communication and push notifications. Ensuring scalability and reliability through distributed systems is crucial for timely delivery.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐ฃ๐๐๐ต๐ผ๐ป โ ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ!๐
Want to break into Machine Learning without spending a fortune?๐ก
This 100% FREE course is your ultimate guide to learning ML with Python from scratch!โจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4k9xb1x
๐ป Start Learning Now โ Enroll Hereโ ๏ธ
Want to break into Machine Learning without spending a fortune?๐ก
This 100% FREE course is your ultimate guide to learning ML with Python from scratch!โจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4k9xb1x
๐ป Start Learning Now โ Enroll Hereโ ๏ธ
Data Science Interview Questions
1: How would you preprocess and tokenize text data from tweets for sentiment analysis? Discuss potential challenges and solutions.
- Answer: Preprocessing and tokenizing text data for sentiment analysis involves tasks like lowercasing, removing stop words, and stemming or lemmatization. Handling challenges like handling emojis, slang, and noisy text is crucial. Tools like NLTK or spaCy can assist in these tasks.
2: Explain the collaborative filtering approach in building recommendation systems. How might Twitter use this to enhance user experience?
- Answer: Collaborative filtering recommends items based on user preferences and similarities. Techniques include user-based or item-based collaborative filtering and matrix factorization. Twitter could leverage user interactions to recommend tweets, users, or topics.
3: Write a Python or Scala function to count the frequency of hashtags in a given collection of tweets.
- Answer (Python):
4: How does graph analysis contribute to understanding user interactions and content propagation on Twitter? Provide a specific use case.
- Answer: Graph analysis on Twitter involves examining user interactions. For instance, identifying influential users or detecting communities based on retweet or mention networks. Algorithms like PageRank or Louvain Modularity can aid in these analyses.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
1: How would you preprocess and tokenize text data from tweets for sentiment analysis? Discuss potential challenges and solutions.
- Answer: Preprocessing and tokenizing text data for sentiment analysis involves tasks like lowercasing, removing stop words, and stemming or lemmatization. Handling challenges like handling emojis, slang, and noisy text is crucial. Tools like NLTK or spaCy can assist in these tasks.
2: Explain the collaborative filtering approach in building recommendation systems. How might Twitter use this to enhance user experience?
- Answer: Collaborative filtering recommends items based on user preferences and similarities. Techniques include user-based or item-based collaborative filtering and matrix factorization. Twitter could leverage user interactions to recommend tweets, users, or topics.
3: Write a Python or Scala function to count the frequency of hashtags in a given collection of tweets.
- Answer (Python):
def count_hashtags(tweet_collection):
hashtags_count = {}
for tweet in tweet_collection:
hashtags = [word for word in tweet.split() if word.startswith('#')]
for hashtag in hashtags:
hashtags_count[hashtag] = hashtags_count.get(hashtag, 0) + 1
return hashtags_count
4: How does graph analysis contribute to understanding user interactions and content propagation on Twitter? Provide a specific use case.
- Answer: Graph analysis on Twitter involves examining user interactions. For instance, identifying influential users or detecting communities based on retweet or mention networks. Algorithms like PageRank or Louvain Modularity can aid in these analyses.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
- SQL
- Blockchain
- HTML & CSS
- Excel, and
- Generative AI
These free full courses will take you from beginner to expert!
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4gRuzlV
Enroll For FREE & Get Certified ๐
- SQL
- Blockchain
- HTML & CSS
- Excel, and
- Generative AI
These free full courses will take you from beginner to expert!
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4gRuzlV
Enroll For FREE & Get Certified ๐
If I Were to Start My Data Science Career from Scratch, Here's What I Would Do ๐
1๏ธโฃ Master Advanced SQL
Foundations: Learn database structures, tables, and relationships.
Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.
Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.
JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.
Advanced Concepts: CTEs, window functions, and query optimization.
Metric Development: Build and report metrics effectively.
2๏ธโฃ Study Statistics & A/B Testing
Descriptive Statistics: Know your mean, median, mode, and standard deviation.
Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.
Probability: Understand basic probability and Bayes' theorem.
Intro to ML: Start with linear regression, decision trees, and K-means clustering.
Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.
A/B Testing: Design experimentsโhypothesis formation, sample size calculation, and sample biases.
3๏ธโฃ Learn Python for Data
Data Manipulation: Use pandas for data cleaning and manipulation.
Data Visualization: Explore matplotlib and seaborn for creating visualizations.
Hypothesis Testing: Dive into scipy for statistical testing.
Basic Modeling: Practice building models with scikit-learn.
4๏ธโฃ Develop Product Sense
Product Management Basics: Manage projects and understand the product life cycle.
Data-Driven Strategy: Leverage data to inform decisions and measure success.
Metrics in Business: Define and evaluate metrics that matter to the business.
5๏ธโฃ Hone Soft Skills
Communication: Clearly explain data findings to technical and non-technical audiences.
Collaboration: Work effectively in teams.
Time Management: Prioritize and manage projects efficiently.
Self-Reflection: Regularly assess and improve your skills.
6๏ธโฃ Bonus: Basic Data Engineering
Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.
ETL: Set up extraction jobs, manage dependencies, clean and validate data.
Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
1๏ธโฃ Master Advanced SQL
Foundations: Learn database structures, tables, and relationships.
Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.
Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.
JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.
Advanced Concepts: CTEs, window functions, and query optimization.
Metric Development: Build and report metrics effectively.
2๏ธโฃ Study Statistics & A/B Testing
Descriptive Statistics: Know your mean, median, mode, and standard deviation.
Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.
Probability: Understand basic probability and Bayes' theorem.
Intro to ML: Start with linear regression, decision trees, and K-means clustering.
Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.
A/B Testing: Design experimentsโhypothesis formation, sample size calculation, and sample biases.
3๏ธโฃ Learn Python for Data
Data Manipulation: Use pandas for data cleaning and manipulation.
Data Visualization: Explore matplotlib and seaborn for creating visualizations.
Hypothesis Testing: Dive into scipy for statistical testing.
Basic Modeling: Practice building models with scikit-learn.
4๏ธโฃ Develop Product Sense
Product Management Basics: Manage projects and understand the product life cycle.
Data-Driven Strategy: Leverage data to inform decisions and measure success.
Metrics in Business: Define and evaluate metrics that matter to the business.
5๏ธโฃ Hone Soft Skills
Communication: Clearly explain data findings to technical and non-technical audiences.
Collaboration: Work effectively in teams.
Time Management: Prioritize and manage projects efficiently.
Self-Reflection: Regularly assess and improve your skills.
6๏ธโฃ Bonus: Basic Data Engineering
Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.
ETL: Set up extraction jobs, manage dependencies, clean and validate data.
Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
1๏ธโฃ Get Started with Microsoft Data Analytics
2๏ธโฃ Prepare Data for Analysis with Power BI
3๏ธโฃ Model Data with Power BI
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/40N8akW
Enroll For FREE & Get Certified ๐
1๏ธโฃ Get Started with Microsoft Data Analytics
2๏ธโฃ Prepare Data for Analysis with Power BI
3๏ธโฃ Model Data with Power BI
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/40N8akW
Enroll For FREE & Get Certified ๐
Complete Data Science Roadmap
๐๐
1. Introduction to Data Science
- Overview and Importance
- Data Science Lifecycle
- Key Roles (Data Scientist, Analyst, Engineer)
2. Mathematics and Statistics
- Probability and Distributions
- Descriptive/Inferential Statistics
- Hypothesis Testing
- Linear Algebra and Calculus Basics
3. Programming Languages
- Python: NumPy, Pandas, Matplotlib
- R: dplyr, ggplot2
- SQL: Joins, Aggregations, CRUD
4. Data Collection & Preprocessing
- Data Cleaning and Wrangling
- Handling Missing Data
- Feature Engineering
5. Exploratory Data Analysis (EDA)
- Summary Statistics
- Data Visualization (Histograms, Box Plots, Correlation)
6. Machine Learning
- Supervised (Linear/Logistic Regression, Decision Trees)
- Unsupervised (K-Means, PCA)
- Model Selection and Cross-Validation
7. Advanced Machine Learning
- SVM, Random Forests, Boosting
- Neural Networks Basics
8. Deep Learning
- Neural Networks Architecture
- CNNs for Image Data
- RNNs for Sequential Data
9. Natural Language Processing (NLP)
- Text Preprocessing
- Sentiment Analysis
- Word Embeddings (Word2Vec)
10. Data Visualization & Storytelling
- Dashboards (Tableau, Power BI)
- Telling Stories with Data
11. Model Deployment
- Deploy with Flask or Django
- Monitoring and Retraining Models
12. Big Data & Cloud
- Introduction to Hadoop, Spark
- Cloud Tools (AWS, Google Cloud)
13. Data Engineering Basics
- ETL Pipelines
- Data Warehousing (Redshift, BigQuery)
14. Ethics in Data Science
- Ethical Data Usage
- Bias in AI Models
15. Tools for Data Science
- Jupyter, Git, Docker
16. Career Path & Certifications
- Building a Data Science Portfolio
Like if you need similar content ๐๐
๐๐
1. Introduction to Data Science
- Overview and Importance
- Data Science Lifecycle
- Key Roles (Data Scientist, Analyst, Engineer)
2. Mathematics and Statistics
- Probability and Distributions
- Descriptive/Inferential Statistics
- Hypothesis Testing
- Linear Algebra and Calculus Basics
3. Programming Languages
- Python: NumPy, Pandas, Matplotlib
- R: dplyr, ggplot2
- SQL: Joins, Aggregations, CRUD
4. Data Collection & Preprocessing
- Data Cleaning and Wrangling
- Handling Missing Data
- Feature Engineering
5. Exploratory Data Analysis (EDA)
- Summary Statistics
- Data Visualization (Histograms, Box Plots, Correlation)
6. Machine Learning
- Supervised (Linear/Logistic Regression, Decision Trees)
- Unsupervised (K-Means, PCA)
- Model Selection and Cross-Validation
7. Advanced Machine Learning
- SVM, Random Forests, Boosting
- Neural Networks Basics
8. Deep Learning
- Neural Networks Architecture
- CNNs for Image Data
- RNNs for Sequential Data
9. Natural Language Processing (NLP)
- Text Preprocessing
- Sentiment Analysis
- Word Embeddings (Word2Vec)
10. Data Visualization & Storytelling
- Dashboards (Tableau, Power BI)
- Telling Stories with Data
11. Model Deployment
- Deploy with Flask or Django
- Monitoring and Retraining Models
12. Big Data & Cloud
- Introduction to Hadoop, Spark
- Cloud Tools (AWS, Google Cloud)
13. Data Engineering Basics
- ETL Pipelines
- Data Warehousing (Redshift, BigQuery)
14. Ethics in Data Science
- Ethical Data Usage
- Bias in AI Models
15. Tools for Data Science
- Jupyter, Git, Docker
16. Career Path & Certifications
- Building a Data Science Portfolio
Like if you need similar content ๐๐
Forwarded from Trump's Ear
Please open Telegram to view this post
VIEW IN TELEGRAM
ยฉHow fresher can get a job as a data scientist?ยฉ
1. Education: Obtain a degree in a relevant field such as computer science, statistics, mathematics, or data science. Consider pursuing additional certifications or specialized courses in data science to enhance your skills.
2. Build a strong foundation: Develop a strong understanding of key concepts in data science such as statistics, machine learning, programming languages (such as Python or R), and data visualization.
3. Hands-on experience: Gain practical experience by working on projects, participating in hackathons, or internships. Building a portfolio of projects showcasing your data science skills can be beneficial when applying for jobs.
4. Networking: Attend industry events, conferences, and meetups to network with professionals in the field. Networking can help you learn about job opportunities and make valuable connections.
5. Apply for entry-level positions: Look for entry-level positions such as data analyst, research assistant, or junior data scientist roles to gain experience and start building your career in data science.
6. Prepare for interviews: Practice common data science interview questions, showcase your problem-solving skills, and be prepared to discuss your projects and experiences related to data science.
7. Continuous learning: Data science is a rapidly evolving field, so it's important to stay updated on the latest trends, tools, and techniques. Consider taking online courses, attending workshops, or joining professional organizations to continue learning and growing in the field.
1. Education: Obtain a degree in a relevant field such as computer science, statistics, mathematics, or data science. Consider pursuing additional certifications or specialized courses in data science to enhance your skills.
2. Build a strong foundation: Develop a strong understanding of key concepts in data science such as statistics, machine learning, programming languages (such as Python or R), and data visualization.
3. Hands-on experience: Gain practical experience by working on projects, participating in hackathons, or internships. Building a portfolio of projects showcasing your data science skills can be beneficial when applying for jobs.
4. Networking: Attend industry events, conferences, and meetups to network with professionals in the field. Networking can help you learn about job opportunities and make valuable connections.
5. Apply for entry-level positions: Look for entry-level positions such as data analyst, research assistant, or junior data scientist roles to gain experience and start building your career in data science.
6. Prepare for interviews: Practice common data science interview questions, showcase your problem-solving skills, and be prepared to discuss your projects and experiences related to data science.
7. Continuous learning: Data science is a rapidly evolving field, so it's important to stay updated on the latest trends, tools, and techniques. Consider taking online courses, attending workshops, or joining professional organizations to continue learning and growing in the field.