Telegram Web
๐—™๐—ฅ๐—˜๐—˜ ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

1)Business Analysis โ€“ Foundation
2)Business Analysis Fundamentals
3)The Essentials of Business & Risk Analysis 
4)Master Microsoft Power BI 

๐—Ÿ๐—ถ๐—ป๐—ธ ๐Ÿ‘‡:-

https://pdlink.in/4hHxBdW

Enroll For FREE & Get Certified๐ŸŽ“
Some useful PYTHON libraries for data science

NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms,  advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++

SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.

Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook โ€“pylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.

Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Pythonโ€™s usage in data scientist community.

Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.

Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.

Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.

Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.

Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.

Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.

SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.

Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.

Additional libraries, you might need:

os for Operating system and file operations

networkx and igraph for graph based data manipulations

regular expressions for finding patterns in text data

BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ˜

Want to master Python and level up your data analytics skills?โœจ๏ธ

These high-quality tutorials to help you go from beginner to pro!โœ…๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4hXQOHQ

๐Ÿ“ข No cost, no catch โ€“ just pure learning! ๐Ÿš€
Accenture Data Scientist Interview Questions!

1st round-

Technical Round

- 2 SQl questions based on playing around views and table, which could be solved by both subqueries and window functions.

- 2 Pandas questions , testing your knowledge on filtering , concatenation , joins and merge.

- 3-4 Machine Learning questions completely based on my Projects, starting from
Explaining the problem statements and then discussing the roadblocks of those projects and some cross questions.

2nd round-

- Couple of python questions agains on pandas and numpy and some hypothetical data.

- Machine Learning projects explanations and cross questions.

- Case Study and a quiz question.

3rd and Final round.

HR interview

Simple Scenerio Based Questions.

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
Key Concepts for Machine Learning Interviews

1. Supervised Learning: Understand the basics of supervised learning, where models are trained on labeled data. Key algorithms include Linear Regression, Logistic Regression, Support Vector Machines (SVMs), k-Nearest Neighbors (k-NN), Decision Trees, and Random Forests.

2. Unsupervised Learning: Learn unsupervised learning techniques that work with unlabeled data. Familiarize yourself with algorithms like k-Means Clustering, Hierarchical Clustering, Principal Component Analysis (PCA), and t-SNE.

3. Model Evaluation Metrics: Know how to evaluate models using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, mean squared error (MSE), and R-squared. Understand when to use each metric based on the problem at hand.

4. Overfitting and Underfitting: Grasp the concepts of overfitting and underfitting, and know how to address them through techniques like cross-validation, regularization (L1, L2), and pruning in decision trees.

5. Feature Engineering: Master the art of creating new features from raw data to improve model performance. Techniques include one-hot encoding, feature scaling, polynomial features, and feature selection methods like Recursive Feature Elimination (RFE).

6. Hyperparameter Tuning: Learn how to optimize model performance by tuning hyperparameters using techniques like Grid Search, Random Search, and Bayesian Optimization.

7. Ensemble Methods: Understand ensemble learning techniques that combine multiple models to improve accuracy. Key methods include Bagging (e.g., Random Forests), Boosting (e.g., AdaBoost, XGBoost, Gradient Boosting), and Stacking.

8. Neural Networks and Deep Learning: Get familiar with the basics of neural networks, including activation functions, backpropagation, and gradient descent. Learn about deep learning architectures like Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data.

9. Natural Language Processing (NLP): Understand key NLP techniques such as tokenization, stemming, and lemmatization, as well as advanced topics like word embeddings (e.g., Word2Vec, GloVe), transformers (e.g., BERT, GPT), and sentiment analysis.

10. Dimensionality Reduction: Learn how to reduce the number of features in a dataset while preserving as much information as possible. Techniques include PCA, Singular Value Decomposition (SVD), and Feature Importance methods.

11. Reinforcement Learning: Gain a basic understanding of reinforcement learning, where agents learn to make decisions by receiving rewards or penalties. Familiarize yourself with concepts like Markov Decision Processes (MDPs), Q-learning, and policy gradients.

12. Big Data and Scalable Machine Learning: Learn how to handle large datasets and scale machine learning algorithms using tools like Apache Spark, Hadoop, and distributed frameworks for training models on big data.

13. Model Deployment and Monitoring: Understand how to deploy machine learning models into production environments and monitor their performance over time. Familiarize yourself with tools and platforms like TensorFlow Serving, AWS SageMaker, Docker, and Flask for model deployment.

14. Ethics in Machine Learning: Be aware of the ethical implications of machine learning, including issues related to bias, fairness, transparency, and accountability. Understand the importance of creating models that are not only accurate but also ethically sound.

15. Bayesian Inference: Learn about Bayesian methods in machine learning, which involve updating the probability of a hypothesis as more evidence becomes available. Key concepts include Bayesโ€™ theorem, prior and posterior distributions, and Bayesian networks.
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฝ๐—ฟ๐—ฒ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ผ๐—ณ ๐—”๐—œ-๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ฒ๐—ฑ ๐—ฃ๐—ฟ๐—ฒ๐—บ๐—ถ๐˜‚๐—บ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ฎ๐—ฐ๐—ฐ๐—ฒ๐˜€๐˜€ ๐˜๐—ผ ๐Ÿญ๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ผ๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐—ฐ๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Benefits:-

- AI Mentor for unlimited, 24/7 doubt resolution
- Coding Exercises with real-time coding assistance
- Mock Interviews with AI-driven personalized prep and more

๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡:-

 https://pdlink.in/4aZZWtf

๐Ÿ’ฅ Limited time offer: Free preview on all Premium Courses + Access to 1000+ free courses on GenAI, Data Science, etc.
Seaborn Cheatsheet โœ…
๐—ฆ๐—ค๐—Ÿ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—–๐—ฎ๐—ป ๐—”๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐—š๐—ฒ๐˜ ๐—ฌ๐—ผ๐˜‚ ๐—›๐—ถ๐—ฟ๐—ฒ๐—ฑ!๐Ÿ˜

Want to land a Data Analyst or SQL-based job?

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4hCYob9

๐Ÿš€ Start working on these projects today & boost your SQL skills! ๐Ÿ’ป
๐Ÿš€ Top 10 Tools Data Scientists Love! ๐Ÿง 

In the ever-evolving world of data science, staying updated with the right tools is crucial to solving complex problems and deriving meaningful insights.

๐Ÿ” Hereโ€™s a quick breakdown of the most popular tools:

1. Python ๐Ÿ: The go-to language for data science, favored for its versatility and powerful libraries.
2. SQL ๐Ÿ› ๏ธ: Essential for querying databases and manipulating data.
3. Jupyter Notebooks ๐Ÿ““: An interactive environment that makes data analysis and visualization a breeze.
4. TensorFlow/PyTorch ๐Ÿค–: Leading frameworks for deep learning and neural networks.
5. Tableau ๐Ÿ“Š: A user-friendly tool for creating stunning visualizations and dashboards.
6. Git & GitHub ๐Ÿ’ป: Version control systems that every data scientist should master.
7. Hadoop & Spark ๐Ÿ”ฅ: Big data frameworks that help process massive datasets efficiently.
8. Scikit-learn ๐Ÿงฌ: A powerful library for machine learning in Python.
9. R ๐Ÿ“ˆ: A statistical programming language that is still a favorite among many analysts.
10. Docker ๐Ÿ‹: A must-have for containerization and deploying applications.

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐—™๐—ฅ๐—˜๐—˜ ๐—ฉ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—š๐—น๐—ผ๐—ฏ๐—ฎ๐—น ๐—š๐—ถ๐—ฎ๐—ป๐˜๐˜€!๐Ÿ˜

Want real-world experience in ๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ๐˜€๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†, ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐˜†, ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ, ๐—ผ๐—ฟ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ?

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4hZlkAW

๐Ÿ”— Save & share this post with someone who needs it!
Important Topics to become a data scientist
[Advanced Level]
๐Ÿ‘‡๐Ÿ‘‡

1. Mathematics

Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification

2. Probability

Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution

3. Statistics

Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression

4. Programming

Python:

Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn

R Programming:

R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny

DataBase:
SQL
MongoDB

Data Structures

Web scraping

Linux

Git

5. Machine Learning

How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage

6. Deep Learning

Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification

7. Feature Engineering

Baseline Model
Categorical Encodings
Feature Generation
Feature Selection

8. Natural Language Processing

Text Classification
Word Vectors

9. Data Visualization Tools

BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense

10. Deployment

Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
๐—ฃ๐—ฎ๐˜† ๐—”๐—ณ๐˜๐—ฒ๐—ฟ ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐Ÿ˜

Start Learning Coding From Scratch 

Curriculum designed and taught by Alumni from IITs & Leading Tech Companies.

๐‡๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:- 

๐ŸŒŸ Trusted by 7000+ Students
๐Ÿค 500+ Hiring Partners
๐Ÿ’ผ Avg. Rs. 7.2 LPA
๐Ÿš€ 41 LPA Highest Package

Eligibility: BTech / BCA / BSc / MCA / MSc 

๐‘๐ž๐ ๐ข๐ฌ๐ญ๐ž๐ซ ๐๐จ๐ฐ๐Ÿ‘‡ :- 

https://pdlink.in/4hO7rWY

Hurry, limited seats available!๐Ÿƒโ€โ™‚๏ธ
Top 5 Case Studies for Data Analytics: You Must Know Before Attending an Interview

1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.

2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.

3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.

4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.

5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.

Like if it helps ๐Ÿ˜„
2025/02/24 20:50:22
Back to Top
HTML Embed Code: