Notice: file_put_contents(): Write of 3289 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11481 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Фрейдзона@derFreudZone P.210
DERFREUDZONE Telegram 210
Как искусственные нейроны помогают управлять живыми

Специалисты по нейросетям из Массачусетского технологического института создали и протестировали на животных компьютерные модели, имитирующие работу зрительной коры мозга.

Модели обучались на более чем 1 миллионе изображений: на вход подавалось размеченная картинка с указанием самого важного объекта на ней, а модель по разметке училась распознавать, что на изображении - стул или самолет. Так ученые определили, что в ответ на одно и то же изображение искусственные нейроны генерируют сигналы, схожие с сигналами нейронов зрительной коры.

А можно ли с помощью этих моделей контролировать нейронную активность коры головного мозга? Для ответа на этот вопрос ученые сопоставили активность нейронов модели и нейронов животных в ответ на изображения и составили карту поля V4 зрительной коры, которое отвечает за восприятие цветов. Каждому нейрону соответствовал узел компьютерной модели. Но поскольку в зоне V4 миллионы нейронов, карты были составлены для групп из 5-40 нейронов.

Затем ученые попытались использовать предсказания полученной модели, чтобы управлять активностью нейронов зрительной коры мозга. Первой целью было создать изображение, на которое нейрон отреагировал бы сильнее, чем на обычную картинку. Эти искусственные картинки были созданы моделями и не были похожи ни на какие реальные объекты.

В результате, на эти изображения нейроны отреагировали в среднем на 40% активнее. Это первый случай подобного управления активностью нейронов. Кроме того, ученым удалось создать изображение, которое повысило активность целевого нейрона, снизив при этом реакцию соседних.

Модели также использовали, чтобы предсказать реакцию нейронов мозга на искусственные изображения. Точность предсказаний составила около 54%. Сейчас ученые стремятся приблизить этот показатель к точности предсказаний моделей на реальных изображениях, которая доходит до 90%.

В будущем управление нейронами мозга может помочь в лечении расстройств настроения, например депрессии. Сейчас ученые расширяют свою модель до височной доли, в которой есть миндалина, участвующая в эмоциональных реакциях.

Ксения Михайлова



tgoop.com/derFreudZone/210
Create:
Last Update:

Как искусственные нейроны помогают управлять живыми

Специалисты по нейросетям из Массачусетского технологического института создали и протестировали на животных компьютерные модели, имитирующие работу зрительной коры мозга.

Модели обучались на более чем 1 миллионе изображений: на вход подавалось размеченная картинка с указанием самого важного объекта на ней, а модель по разметке училась распознавать, что на изображении - стул или самолет. Так ученые определили, что в ответ на одно и то же изображение искусственные нейроны генерируют сигналы, схожие с сигналами нейронов зрительной коры.

А можно ли с помощью этих моделей контролировать нейронную активность коры головного мозга? Для ответа на этот вопрос ученые сопоставили активность нейронов модели и нейронов животных в ответ на изображения и составили карту поля V4 зрительной коры, которое отвечает за восприятие цветов. Каждому нейрону соответствовал узел компьютерной модели. Но поскольку в зоне V4 миллионы нейронов, карты были составлены для групп из 5-40 нейронов.

Затем ученые попытались использовать предсказания полученной модели, чтобы управлять активностью нейронов зрительной коры мозга. Первой целью было создать изображение, на которое нейрон отреагировал бы сильнее, чем на обычную картинку. Эти искусственные картинки были созданы моделями и не были похожи ни на какие реальные объекты.

В результате, на эти изображения нейроны отреагировали в среднем на 40% активнее. Это первый случай подобного управления активностью нейронов. Кроме того, ученым удалось создать изображение, которое повысило активность целевого нейрона, снизив при этом реакцию соседних.

Модели также использовали, чтобы предсказать реакцию нейронов мозга на искусственные изображения. Точность предсказаний составила около 54%. Сейчас ученые стремятся приблизить этот показатель к точности предсказаний моделей на реальных изображениях, которая доходит до 90%.

В будущем управление нейронами мозга может помочь в лечении расстройств настроения, например депрессии. Сейчас ученые расширяют свою модель до височной доли, в которой есть миндалина, участвующая в эмоциональных реакциях.

Ксения Михайлова

BY Фрейдзона




Share with your friend now:
tgoop.com/derFreudZone/210

View MORE
Open in Telegram


Telegram News

Date: |

2How to set up a Telegram channel? (A step-by-step tutorial) To edit your name or bio, click the Menu icon and select “Manage Channel.” On June 7, Perekopsky met with Brazilian President Jair Bolsonaro, an avid user of the platform. According to the firm's VP, the main subject of the meeting was "freedom of expression." While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up.
from us


Telegram Фрейдзона
FROM American