tgoop.com/diceanalytics/104
Last Update:
Недавно наткнулся на пару статей по product analytics framework. Так как я в последнее время тяготею к подобным методологическим размышлениям, читал с большим интересом. Фреймворки в этих статьях очень разные и от этого только интереснее. Этот и следующий посты посвящу им.
Первая статья сразу дает определение: “A product analytics framework is a system for analyzing user interactions with a product to understand their needs and preferences, inform decision-making, and improve user experience”. Это очень инструментальный фреймворк, который в качестве ключевых компонентов рассматривает разные методы анализа:
- Segment analysis
- Cohort analysis
- Customer journey analysis
- Funnel analysis
- Trend analysis
- Conversion analysis
- Attribution analysis
- Churn analysis
- Retention analysis
В статье достаточно подробно расписывается каждый пункт (вообще, в этом блоге куча весьма интересных ссылок, я по ним как по википедии ползал достаточно долго).
Такая сильная ориентированность на различные методы понятна — этот фреймворк предложен аналитическим сервисом, который делает инструменты для продуктовых команд. По сути они рассказывают о конструкции своего сервиса. Поэтому сами методы описаны сильно беднее, чем могли бы быть на самом деле — в своей практике их надо дорабатывать и наполнять глубиной и гибкостью.
Собственно, в этом и слабость этого фреймворка, на мой взгляд — он не дает стратегии исследования, не помогает приоритизировать задачи. А самое главное, не особо помогает понять, как соотнести метод и его результаты с “inform decision-making, and improve user experience” — для этого уже желателен опыт в аналитике.
Тем не менее, список методов хорош, я даже над некоторыми хочу поглубже подумать (типа Customer journey analysis). Джунам и для вопросов кандидатам на собесах так вообще полезно. Да и сама попытка построить фреймворк аналитики не на основе иерархии метрик мне тоже любопытна.
BY аналитика на кубах
Share with your friend now:
tgoop.com/diceanalytics/104