DS_INTERVIEW_LIB Telegram 1038
🤔 Что делать, если редкий класс встречается менее 1% случаев и обычное увеличение выборки не помогает

Когда редкий класс очень мал (например, менее 1%), простое увеличение выборки (oversampling) может не решить проблему. В некоторых областях, таких как обнаружение мошенничества или аномалий, редкий класс по своей природе сильно отличается от обычных данных. Традиционные методы создания синтетических примеров могут не передавать сложные «аномальные» паттерны.

В таких случаях лучше использовать методы обнаружения аномалий, которые учатся распознавать нормальное поведение и отмечают отклонения. Если всё же применяете увеличение выборки, важно не создавать искусственные данные, слишком похожие на обычные, чтобы не запутать модель.

Также помогает обучение с учётом стоимости ошибок (cost-sensitive learning), которое сильнее штрафует ошибки на редком классе. Для оценки результатов полезно смотреть специальные метрики, например, количество ложных срабатываний и пропусков именно для редкого класса.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3



tgoop.com/ds_interview_lib/1038
Create:
Last Update:

🤔 Что делать, если редкий класс встречается менее 1% случаев и обычное увеличение выборки не помогает

Когда редкий класс очень мал (например, менее 1%), простое увеличение выборки (oversampling) может не решить проблему. В некоторых областях, таких как обнаружение мошенничества или аномалий, редкий класс по своей природе сильно отличается от обычных данных. Традиционные методы создания синтетических примеров могут не передавать сложные «аномальные» паттерны.

В таких случаях лучше использовать методы обнаружения аномалий, которые учатся распознавать нормальное поведение и отмечают отклонения. Если всё же применяете увеличение выборки, важно не создавать искусственные данные, слишком похожие на обычные, чтобы не запутать модель.

Также помогает обучение с учётом стоимости ошибок (cost-sensitive learning), которое сильнее штрафует ошибки на редком классе. Для оценки результатов полезно смотреть специальные метрики, например, количество ложных срабатываний и пропусков именно для редкого класса.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/1038

View MORE
Open in Telegram


Telegram News

Date: |

The best encrypted messaging apps Today, we will address Telegram channels and how to use them for maximum benefit. Step-by-step tutorial on desktop: Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN. With Bitcoin down 30% in the past week, some crypto traders have taken to Telegram to “voice” their feelings.
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American