DS_INTERVIEW_LIB Telegram 1042
👇 Когда стоит рассмотреть использование специализированных решателей вместо стандартных градиентных фреймворков глубокого обучения

Хотя PyTorch или TensorFlow способны справляться со многими задачами с ограничениями, есть ситуации, когда специализированные решатели оказываются более подходящими:

Комбинаторные или целочисленные ограничения: если необходимо обеспечить дискретность выходных данных или комбинаторную допустимость (например, в задачах планирования или маршрутизации), более эффективными могут быть методы смешанного целочисленного программирования.

Жёсткие физические или операционные ограничения: в инженерном проектировании или исследовании операций ограничения часто настолько строгие, что естественнее использовать методы вроде ветвей и границ или внутренней точки.

Высокомерные и связанные между собой ограничения: если ограничения затрагивают множество взаимодействующих переменных (например, потоки в сетях, многопериодное планирование), общие решатели, способные обрабатывать крупномасштабные задачи с ограничениями, могут быть быстрее или надёжнее.

Потенциальные сложности и крайние случаи:

Сложная интеграция: связать параметры нейросети с внешним решателем требует дополнительных усилий для организации связи или передачи градиентов (некоторые решатели не являются полностью дифференцируемыми).

Ограниченная масштабируемость: некоторые специализированные решатели могут не справляться с задачами, где размерность проблем или сети очень велика.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
2



tgoop.com/ds_interview_lib/1042
Create:
Last Update:

👇 Когда стоит рассмотреть использование специализированных решателей вместо стандартных градиентных фреймворков глубокого обучения

Хотя PyTorch или TensorFlow способны справляться со многими задачами с ограничениями, есть ситуации, когда специализированные решатели оказываются более подходящими:

Комбинаторные или целочисленные ограничения: если необходимо обеспечить дискретность выходных данных или комбинаторную допустимость (например, в задачах планирования или маршрутизации), более эффективными могут быть методы смешанного целочисленного программирования.

Жёсткие физические или операционные ограничения: в инженерном проектировании или исследовании операций ограничения часто настолько строгие, что естественнее использовать методы вроде ветвей и границ или внутренней точки.

Высокомерные и связанные между собой ограничения: если ограничения затрагивают множество взаимодействующих переменных (например, потоки в сетях, многопериодное планирование), общие решатели, способные обрабатывать крупномасштабные задачи с ограничениями, могут быть быстрее или надёжнее.

Потенциальные сложности и крайние случаи:

Сложная интеграция: связать параметры нейросети с внешним решателем требует дополнительных усилий для организации связи или передачи градиентов (некоторые решатели не являются полностью дифференцируемыми).

Ограниченная масштабируемость: некоторые специализированные решатели могут не справляться с задачами, где размерность проблем или сети очень велика.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/1042

View MORE
Open in Telegram


Telegram News

Date: |

Healing through screaming therapy During a meeting with the president of the Supreme Electoral Court (TSE) on June 6, Telegram's Vice President Ilya Perekopsky announced the initiatives. According to the executive, Brazil is the first country in the world where Telegram is introducing the features, which could be expanded to other countries facing threats to democracy through the dissemination of false content. Clear In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group.
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American