DS_INTERVIEW_LIB Telegram 1051
🌀 Почему в некоторых случаях полезно обучать модель на данных, полученных… от другой модели

Обучение на предсказаниях другой модели — это основа подхода под названием knowledge distillation (дистилляция знаний). Идея в том, что сложная, тяжёлая модель (например, глубокая нейросеть) может содержать более «мягкую» и богатую информацию о структуре задачи, чем просто метки «0» и «1».

Маленькая модель, обучающаяся не на оригинальных метках, а на вероятностных предсказаниях большой модели, может:
➡️ лучше улавливать обобщённые закономерности,
➡️ достигать качества, близкого к исходной модели,
➡️ быть гораздо быстрее и легче в продакшене.

Это особенно полезно, когда требуется deploy в ограниченной среде (например, на мобильных устройствах), но не хочется терять в качестве. Получается, что модель может «учиться у другой модели», как ученик у учителя — и это работает.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍1



tgoop.com/ds_interview_lib/1051
Create:
Last Update:

🌀 Почему в некоторых случаях полезно обучать модель на данных, полученных… от другой модели

Обучение на предсказаниях другой модели — это основа подхода под названием knowledge distillation (дистилляция знаний). Идея в том, что сложная, тяжёлая модель (например, глубокая нейросеть) может содержать более «мягкую» и богатую информацию о структуре задачи, чем просто метки «0» и «1».

Маленькая модель, обучающаяся не на оригинальных метках, а на вероятностных предсказаниях большой модели, может:
➡️ лучше улавливать обобщённые закономерности,
➡️ достигать качества, близкого к исходной модели,
➡️ быть гораздо быстрее и легче в продакшене.

Это особенно полезно, когда требуется deploy в ограниченной среде (например, на мобильных устройствах), но не хочется терять в качестве. Получается, что модель может «учиться у другой модели», как ученик у учителя — и это работает.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/1051

View MORE
Open in Telegram


Telegram News

Date: |

Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. The court said the defendant had also incited people to commit public nuisance, with messages calling on them to take part in rallies and demonstrations including at Hong Kong International Airport, to block roads and to paralyse the public transportation system. Various forms of protest promoted on the messaging platform included general strikes, lunchtime protests and silent sit-ins. Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image.
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American