DS_INTERVIEW_LIB Telegram 1141
🔎 Есть ли особенности подбора гиперпараметров для параметрических и непараметрических моделей, кроме стандартной кросс-валидации

Обе группы моделей требуют внимательного подхода к гиперпараметрам, но непараметрические методы часто более чувствительны к их выбору и могут потребовать продвинутых стратегий поиска.

🧮 Параметрические модели:
— Настраиваются регуляризация (например, λ в Ridge/Lasso), архитектура нейросетей, степень полинома и т.д.
— Важно учитывать взаимодействие гиперпараметров: глубина сети, learning rate, регуляризация.
— Обычно меньше гиперпараметров, чем у сложных непараметрических методов, но у глубоких сетей их может быть много.

🌲 Непараметрические модели:
— Настройка может включать: размер соседства в kNN, ширину ядра в KDE, глубину дерева в Random Forest и др.
— Каждый гиперпараметр сильно влияет на комплексность модели и баланс bias/variance.
— Иногда требуется grid search или Bayesian optimization, особенно при большом гиперпараметрическом пространстве.

➡️ На больших датасетах кросс-валидация может быть слишком дорогой — используют приближённые или онлайн методы.
➡️ Риск переобучения на валидационном наборе при переборе множества конфигураций особенно актуален для гибких непараметрических моделей.

🐸 Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2



tgoop.com/ds_interview_lib/1141
Create:
Last Update:

🔎 Есть ли особенности подбора гиперпараметров для параметрических и непараметрических моделей, кроме стандартной кросс-валидации

Обе группы моделей требуют внимательного подхода к гиперпараметрам, но непараметрические методы часто более чувствительны к их выбору и могут потребовать продвинутых стратегий поиска.

🧮 Параметрические модели:
— Настраиваются регуляризация (например, λ в Ridge/Lasso), архитектура нейросетей, степень полинома и т.д.
— Важно учитывать взаимодействие гиперпараметров: глубина сети, learning rate, регуляризация.
— Обычно меньше гиперпараметров, чем у сложных непараметрических методов, но у глубоких сетей их может быть много.

🌲 Непараметрические модели:
— Настройка может включать: размер соседства в kNN, ширину ядра в KDE, глубину дерева в Random Forest и др.
— Каждый гиперпараметр сильно влияет на комплексность модели и баланс bias/variance.
— Иногда требуется grid search или Bayesian optimization, особенно при большом гиперпараметрическом пространстве.

➡️ На больших датасетах кросс-валидация может быть слишком дорогой — используют приближённые или онлайн методы.
➡️ Риск переобучения на валидационном наборе при переборе множества конфигураций особенно актуален для гибких непараметрических моделей.

🐸 Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/1141

View MORE
Open in Telegram


Telegram News

Date: |

Unlimited number of subscribers per channel How to create a business channel on Telegram? (Tutorial) Telegram Channels requirements & features Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN. The visual aspect of channels is very critical. In fact, design is the first thing that a potential subscriber pays attention to, even though unconsciously.
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American