EARTH_CLIMATE_TECH Telegram 396
Forwarded from AI для Всех (Artemii)
Как использовать машинное обучение для оптимального размещения климатических датчиков

Ученые из Великобритании разработали умный алгоритм, который может подсказать, где лучше всего разместить датчики для мониторинга климата в Антарктике.

Эта труднодоступная область очень важна для понимания изменений климата, но сеть наблюдений там очень редкая. А установка каждой новой станции обходится дорого.

Чтобы оптимизировать размещение датчиков, ученые использовали метод машинного обучения - convolutional Gaussian neural process.

Модель проанализировала огромные массивы спутниковых данных об Антарктике, чтобы научиться предсказывать температуру в разных точках континента.

Затем алгоритм моделировал, как новые измерения в тех или иных местах уточнят его предсказания. Так он выявлял самые информативные точки для размещения датчиков.

В результате модель значительно превзошла другие методы в выборе оптимальных локаций. Это позволит лучше понимать климатические изменения в Антарктике и экономить на развертывании сенсорной сети (а еще этот подход отлично транслируется на другие типы датчиков и локаций).

Такой подход - первый шаг к созданию "цифровых двойников" природы. Модели на основе ИИ смогут направлять сбор данных об окружающей среде, чтобы максимально точно её отображать.

🗺️ Статья
🥸 Выступление
🌪️ Код



tgoop.com/earth_climate_tech/396
Create:
Last Update:

Как использовать машинное обучение для оптимального размещения климатических датчиков

Ученые из Великобритании разработали умный алгоритм, который может подсказать, где лучше всего разместить датчики для мониторинга климата в Антарктике.

Эта труднодоступная область очень важна для понимания изменений климата, но сеть наблюдений там очень редкая. А установка каждой новой станции обходится дорого.

Чтобы оптимизировать размещение датчиков, ученые использовали метод машинного обучения - convolutional Gaussian neural process.

Модель проанализировала огромные массивы спутниковых данных об Антарктике, чтобы научиться предсказывать температуру в разных точках континента.

Затем алгоритм моделировал, как новые измерения в тех или иных местах уточнят его предсказания. Так он выявлял самые информативные точки для размещения датчиков.

В результате модель значительно превзошла другие методы в выборе оптимальных локаций. Это позволит лучше понимать климатические изменения в Антарктике и экономить на развертывании сенсорной сети (а еще этот подход отлично транслируется на другие типы датчиков и локаций).

Такой подход - первый шаг к созданию "цифровых двойников" природы. Модели на основе ИИ смогут направлять сбор данных об окружающей среде, чтобы максимально точно её отображать.

🗺️ Статья
🥸 Выступление
🌪️ Код

BY Earth&Climate Tech




Share with your friend now:
tgoop.com/earth_climate_tech/396

View MORE
Open in Telegram


Telegram News

Date: |

You can invite up to 200 people from your contacts to join your channel as the next step. Select the users you want to add and click “Invite.” You can skip this step altogether. So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms. With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. ‘Ban’ on Telegram
from us


Telegram Earth&Climate Tech
FROM American