EBOUTDATASCIENCE Telegram 168
Тотальное Уничтожение Multihead-Attention 😎

Для начала вам стоит прочитать пост про Self-Attention для более лучшего понимания данного поста. Если ты действительно хочешь понять MHA, то к данному посту нужно подходить ни один раз, спрашивая в комментах или у GPT.

Главная суть MHA - Multihead Attention 🤨
- Распараллеливание: Каждая голова в MHA обрабатывается независимо, что позволяет эффективно использовать вычислительные ресурсы (например, GPU).
- Интерпретация разных смыслов: Разные головы фокусируются на различных аспектах текста, что помогает модели "замечать" важные связи между словами с разных точек зрения.

Детальный разбор 😎
Представим, что batch_size=1, seq_len=4, embedding_dim=6, heads=3 (количество голов).
На вход поступает последовательность ["Я", "Хочу", "Пиццу", "<eos>"]. Каждый токен - это слово, которое преобразуется в эмбеддинг (вектор). На выходе имеем матрицу эмбеддингов X, смотрите на картинку 1

1️⃣ Генерация матриц Q, K, V
Картинка 1:
- На вход в MHA поступает матрица эмбеддингов X.
- Имеем веса Wq, Wk, Wv, которые обучаются.
- Путём матричного умножения X на Wq, Wk, Wv получаем три матрицы: Q, K, V.

Размерности:
- X → (batch_size, seq_len, embedding_dim)
- Wq, Wk, Wv → (embedding_dim, embedding_dim)
- Q, K, V → (batch_size, seq_len, embedding_dim)

2️⃣ Деление на головы
Картинка 2:
Вот у нас получились матрицы Q, K, V. Важно понимать, что MHA — это не создание новых отдельных матриц Q, K, V, а деление каждой из них на головы.
Условно, для каждого токена мы уменьшаем длину его вектора, разделяя его между головами. Например, на картинке 2 токен "пиццу" изначально представлен эмбеддингом длиной 6 → [13,14,15,16,17,18]. Если количество голов равно 3, то теперь этот токен преобразуется в 3 вектора по 2 элемента каждый → [[13,14],[15,16],[17,18]], теперь токен "пиццу" представили как три вектора с размером вектора два. Для этого выполняются операции reshape и swap, у нас появляется новая переменная head_dim = embedding_dim/heads 😐

Размерности:
- Q, K, V(batch_size, seq_len, embedding_dim) = (1, 4, 6)
- Q, K, V после reshape(batch_size, seq_len, heads, head_dim) = (1, 4, 3, 2)
- Q, K, V после swap(batch_size, heads, seq_len, head_dim) = (1, 3, 4, 2)

3️⃣ Self-Attention по каждой голове
Картинки 3-5:
Теперь происходит обычная формула Self-Attention по каждой голове: softmax((Q x K.T)/sqrt(head_dim)) * V
И основная суть, что каждая голова обрабатывается параллельно на одном устройстве (например, GPU), что обеспечивает эффективное распараллеливание вычислений ☝️

Размерности:
Attention Output для каждой головы имеет размерность → (batch_size, seq_len, head_dim) = (1, 4, 2).

4️⃣ Объединение голов
Картинки 6-8:

Вот мы посчитали для каждой головы Attention Output, а теперь время всё конкатить, восстанавливая исходную размерность эмбеддингов. Делаем обратные операции что и на втором шаге. Сначала reshape, а потом swap 🤪

Размерности:
- Attention Output каждой головы → (batch_size, text, seq_len, head_dim) = (1, 3, 4, 2)
- После swap(batch_size, seq_len, heads, head_dim)=(1, 4, 3, 2)
- После reshape(batch_size, seq_len, heads×head_dim)=(1, 4, 6)

5️⃣ Финальная обработка
Картинка 9:

Ну и наконец-то получаем наш Attention Output, который матрично умножается на матрицу весов Wo: Attention Output x Wo. По итогу получается FinalOutput, которая идёт в следующие слои 😋

Размерности:
- Wo → (embedding_dim, embedding_dim) = (6, 6)
- Attention Output → (batch_size, seq_len, embedding_dim) = (1, 4, 6)
- FinalOutput → (batch_size, seq_len, embedding_dim) = (1, 4, 6)
Please open Telegram to view this post
VIEW IN TELEGRAM
🍌14🔥136👍2👏1



tgoop.com/eboutdatascience/168
Create:
Last Update:

Тотальное Уничтожение Multihead-Attention 😎

Для начала вам стоит прочитать пост про Self-Attention для более лучшего понимания данного поста. Если ты действительно хочешь понять MHA, то к данному посту нужно подходить ни один раз, спрашивая в комментах или у GPT.

Главная суть MHA - Multihead Attention 🤨
- Распараллеливание: Каждая голова в MHA обрабатывается независимо, что позволяет эффективно использовать вычислительные ресурсы (например, GPU).
- Интерпретация разных смыслов: Разные головы фокусируются на различных аспектах текста, что помогает модели "замечать" важные связи между словами с разных точек зрения.

Детальный разбор 😎
Представим, что batch_size=1, seq_len=4, embedding_dim=6, heads=3 (количество голов).
На вход поступает последовательность ["Я", "Хочу", "Пиццу", "<eos>"]. Каждый токен - это слово, которое преобразуется в эмбеддинг (вектор). На выходе имеем матрицу эмбеддингов X, смотрите на картинку 1

1️⃣ Генерация матриц Q, K, V
Картинка 1:
- На вход в MHA поступает матрица эмбеддингов X.
- Имеем веса Wq, Wk, Wv, которые обучаются.
- Путём матричного умножения X на Wq, Wk, Wv получаем три матрицы: Q, K, V.

Размерности:
- X → (batch_size, seq_len, embedding_dim)
- Wq, Wk, Wv → (embedding_dim, embedding_dim)
- Q, K, V → (batch_size, seq_len, embedding_dim)

2️⃣ Деление на головы
Картинка 2:
Вот у нас получились матрицы Q, K, V. Важно понимать, что MHA — это не создание новых отдельных матриц Q, K, V, а деление каждой из них на головы.
Условно, для каждого токена мы уменьшаем длину его вектора, разделяя его между головами. Например, на картинке 2 токен "пиццу" изначально представлен эмбеддингом длиной 6 → [13,14,15,16,17,18]. Если количество голов равно 3, то теперь этот токен преобразуется в 3 вектора по 2 элемента каждый → [[13,14],[15,16],[17,18]], теперь токен "пиццу" представили как три вектора с размером вектора два. Для этого выполняются операции reshape и swap, у нас появляется новая переменная head_dim = embedding_dim/heads 😐

Размерности:
- Q, K, V(batch_size, seq_len, embedding_dim) = (1, 4, 6)
- Q, K, V после reshape(batch_size, seq_len, heads, head_dim) = (1, 4, 3, 2)
- Q, K, V после swap(batch_size, heads, seq_len, head_dim) = (1, 3, 4, 2)

3️⃣ Self-Attention по каждой голове
Картинки 3-5:
Теперь происходит обычная формула Self-Attention по каждой голове: softmax((Q x K.T)/sqrt(head_dim)) * V
И основная суть, что каждая голова обрабатывается параллельно на одном устройстве (например, GPU), что обеспечивает эффективное распараллеливание вычислений ☝️

Размерности:
Attention Output для каждой головы имеет размерность → (batch_size, seq_len, head_dim) = (1, 4, 2).

4️⃣ Объединение голов
Картинки 6-8:

Вот мы посчитали для каждой головы Attention Output, а теперь время всё конкатить, восстанавливая исходную размерность эмбеддингов. Делаем обратные операции что и на втором шаге. Сначала reshape, а потом swap 🤪

Размерности:
- Attention Output каждой головы → (batch_size, text, seq_len, head_dim) = (1, 3, 4, 2)
- После swap(batch_size, seq_len, heads, head_dim)=(1, 4, 3, 2)
- После reshape(batch_size, seq_len, heads×head_dim)=(1, 4, 6)

5️⃣ Финальная обработка
Картинка 9:

Ну и наконец-то получаем наш Attention Output, который матрично умножается на матрицу весов Wo: Attention Output x Wo. По итогу получается FinalOutput, которая идёт в следующие слои 😋

Размерности:
- Wo → (embedding_dim, embedding_dim) = (6, 6)
- Attention Output → (batch_size, seq_len, embedding_dim) = (1, 4, 6)
- FinalOutput → (batch_size, seq_len, embedding_dim) = (1, 4, 6)

BY Ebout Data Science | Дима Савелко











Share with your friend now:
tgoop.com/eboutdatascience/168

View MORE
Open in Telegram


Telegram News

Date: |

"Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn. best-secure-messaging-apps-shutterstock-1892950018.jpg Telegram Android app: Open the chats list, click the menu icon and select “New Channel.” Unlimited number of subscribers per channel Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations.
from us


Telegram Ebout Data Science | Дима Савелко
FROM American