EBOUTDATASCIENCE Telegram 182
Вопросы, которые вам обязательно зададут на типичном собесе по ClassicML ч2

Все вопросы вы можете посмотреть в моём личном сборнике вопросов, там также есть вопросы не только по ClassicML, но и по NLP, CV и вопросы с компаний)

*️⃣Что такое логистическая регрессия? Как получить из линейной регрессии логистическую регрессию?
Картинка 1
Логистическая регрессия - Модель для классификации, прогнозирующая вероятность принадлежности объекта к классу.
Чтобы получить логистическую регрессию, в функцию сигмоиду (картинка) подставляют линейную комбинацию признаков z = w*x+b. Таким образом, линейная модель используется как вход для сигмоидной функции, чтобы спрогнозировать вероятность.


*️⃣Что такое отступ в логистической регрессии?
Отступ — это значение wx+b, то есть отступ в логистической регрессии m = wx+b. Он показывает, на сколько далеко (в терминах линейного пространства) точка находится от гиперплоскости. Если m > 0, то точка относится к классу 1, если m < 0, то точка относится к классу 0. Это означает, что точки, которые дальше от гиперплоскости, дают более вероятностные предсказания (ближе к 0 или 1).


*️⃣Какие существуют метрики регрессии?
Картинка 2
MSE (Mean Squared Error) — Среднеквадратичная ошибка:
Плюсы: Сильно штрафует большие ошибки, что полезно, если они критичны.
Минусы: Чувствительна к выбросам.

MAE (Mean Absolute Error) — Средняя абсолютная ошибка:
Плюсы: Менее чувствительна к выбросам, чем MSE.
Минусы: Сложнее оптимизировать, так как модуль функции не дифференцируем в нуле.

R² (Коэффициент детерминации) - Показывает, какая доля дисперсии целевой переменной объясняется моделью. Значение от 0 до 1, где 1 — идеальная модель.

RMSE (Root Mean Squared Error) — Корень из среднеквадратичной ошибки:
Интерпретируемость выше, так как метрика имеет те же единицы измерения, что и целевая переменная.

MAPE (Mean Absolute Percentage Error) — Средняя абсолютная процентная ошибка.
MAPE измеряет среднюю относительную ошибку в процентах, показывая, насколько сильно предсказание модели отклоняется от реальных значений.


*️⃣Какие бывают метрики классификации?
Картинка 3
Метрики: Accuracy, Precision, Recall, F1-Score, ROC-AUC, PR-AUC


*️⃣Что такое ROC-AUC, PR-AUC? Каковы их плюсы и минусы?
Картинка 4
- ROC-AUC показывает, насколько хорошо модель может отличить один класс от другого, другими словами, это вероятность того насколько модель может хорошо отранжировать один класс от другого. Чем ближе значение к 1, тем лучше. Если ROC-AUC = 0.5, модель угадывает случайно, ROC-AUC = 0, то модель предсказывает все положительные классы как нули, а нули как положительные. Чувствительна к дисбалансу классов.

- PR-AUC показывает, как хорошо модель находит положительные объекты и насколько точно она это делает. Особенно полезна, если положительных объектов мало (несбалансированные данные).


*️⃣Когда лучше использовать Precision и Recall? Дай реальные кейсы
- Recall важен, когда ошибки FN критичны (определение рака, нам страшно, если модель сказала, что человек здоров (y_pred=0), но на самом деле он болен раком (y_true = 1)).
- Precision важен, когда ошибки FP критичны (поиск спама в почте, нам страшно, если модель сказала, что сообщение спам (y_pred=1), но на самом деле это не спам (y_true=0), тога важное сообщение уйдёт в корзину).
Please open Telegram to view this post
VIEW IN TELEGRAM
🍌6❤‍🔥4👍31🥰1



tgoop.com/eboutdatascience/182
Create:
Last Update:

Вопросы, которые вам обязательно зададут на типичном собесе по ClassicML ч2

Все вопросы вы можете посмотреть в моём личном сборнике вопросов, там также есть вопросы не только по ClassicML, но и по NLP, CV и вопросы с компаний)

*️⃣Что такое логистическая регрессия? Как получить из линейной регрессии логистическую регрессию?

Картинка 1
Логистическая регрессия - Модель для классификации, прогнозирующая вероятность принадлежности объекта к классу.
Чтобы получить логистическую регрессию, в функцию сигмоиду (картинка) подставляют линейную комбинацию признаков z = w*x+b. Таким образом, линейная модель используется как вход для сигмоидной функции, чтобы спрогнозировать вероятность.


*️⃣Что такое отступ в логистической регрессии?
Отступ — это значение wx+b, то есть отступ в логистической регрессии m = wx+b. Он показывает, на сколько далеко (в терминах линейного пространства) точка находится от гиперплоскости. Если m > 0, то точка относится к классу 1, если m < 0, то точка относится к классу 0. Это означает, что точки, которые дальше от гиперплоскости, дают более вероятностные предсказания (ближе к 0 или 1).


*️⃣Какие существуют метрики регрессии?
Картинка 2
MSE (Mean Squared Error) — Среднеквадратичная ошибка:
Плюсы: Сильно штрафует большие ошибки, что полезно, если они критичны.
Минусы: Чувствительна к выбросам.

MAE (Mean Absolute Error) — Средняя абсолютная ошибка:
Плюсы: Менее чувствительна к выбросам, чем MSE.
Минусы: Сложнее оптимизировать, так как модуль функции не дифференцируем в нуле.

R² (Коэффициент детерминации) - Показывает, какая доля дисперсии целевой переменной объясняется моделью. Значение от 0 до 1, где 1 — идеальная модель.

RMSE (Root Mean Squared Error) — Корень из среднеквадратичной ошибки:
Интерпретируемость выше, так как метрика имеет те же единицы измерения, что и целевая переменная.

MAPE (Mean Absolute Percentage Error) — Средняя абсолютная процентная ошибка.
MAPE измеряет среднюю относительную ошибку в процентах, показывая, насколько сильно предсказание модели отклоняется от реальных значений.


*️⃣Какие бывают метрики классификации?
Картинка 3
Метрики: Accuracy, Precision, Recall, F1-Score, ROC-AUC, PR-AUC


*️⃣Что такое ROC-AUC, PR-AUC? Каковы их плюсы и минусы?
Картинка 4
- ROC-AUC показывает, насколько хорошо модель может отличить один класс от другого, другими словами, это вероятность того насколько модель может хорошо отранжировать один класс от другого. Чем ближе значение к 1, тем лучше. Если ROC-AUC = 0.5, модель угадывает случайно, ROC-AUC = 0, то модель предсказывает все положительные классы как нули, а нули как положительные. Чувствительна к дисбалансу классов.

- PR-AUC показывает, как хорошо модель находит положительные объекты и насколько точно она это делает. Особенно полезна, если положительных объектов мало (несбалансированные данные).


*️⃣Когда лучше использовать Precision и Recall? Дай реальные кейсы
- Recall важен, когда ошибки FN критичны (определение рака, нам страшно, если модель сказала, что человек здоров (y_pred=0), но на самом деле он болен раком (y_true = 1)).
- Precision важен, когда ошибки FP критичны (поиск спама в почте, нам страшно, если модель сказала, что сообщение спам (y_pred=1), но на самом деле это не спам (y_true=0), тога важное сообщение уйдёт в корзину).

BY Ebout Data Science | Дима Савелко


Share with your friend now:
tgoop.com/eboutdatascience/182

View MORE
Open in Telegram


Telegram News

Date: |

How to create a business channel on Telegram? (Tutorial) To delete a channel with over 1,000 subscribers, you need to contact user support best-secure-messaging-apps-shutterstock-1892950018.jpg Deputy District Judge Peter Hui sentenced computer technician Ng Man-ho on Thursday, a month after the 27-year-old, who ran a Telegram group called SUCK Channel, was found guilty of seven charges of conspiring to incite others to commit illegal acts during the 2019 extradition bill protests and subsequent months. As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces.
from us


Telegram Ebout Data Science | Дима Савелко
FROM American