EBOUTDATASCIENCE Telegram 206
Теперь даже ваша собака будет понимать логистическую регрессию 🗣

Вот уже прошло второе занятие по ML от Ebout Data Science, делюсь его итогами. Мы проводим живые занятия в небольших группах (до 30 человек), где у вас есть возможность общаться с преподавателем на протяжении всего обучения 👨‍🦰

По теории мы прошли
🔘 как строить строить выборки train/val/test, и как их оценивать результаты модели
🔘 Какие бывают проблемы с данными: пропуски, выбросы, мультиколлинеарность, утечка данных
🔘Что такое недообучение и переобучение?
🔘 И что такое регуляризация линейных моделей: L1, L2, Elastic Net, и чем они оличаются?

А попрактиковались в:
🟣работе с мультиколлирированными данными на синтетическом датасете
🟡самостоятельно реализовали методы регуляризации
🔵анализировали влияние регуляризации на веса, интерпретация
🟢решили задачу на kaggle: задача на прогнозирования цены квартиры с помощью линрег

А вот отзывы учеников на второе занятие 🍷
Математическую часть объяснил довольно понятно хорошо разжеван материал, матформулы даны с понятными пояснениями

Как и в прошлый раз, практическая часть реализация на питоне с нуля - самое полезное. ещё примеры были хорошие

- то, что покрываешь тему исчерпывающе
- есть домашка полезная!

В этот раз понравился сам материал: синтез статистики и машинного обучения + очень доходчиво все было объяснено преподавателем


На третьем занятии "Классификация. Логистическая регрессия. Метрики", которые пройдёт в четверг (6 марта) с 18:00 по 19:30 - мы сделаем уклон в теорию логистической регрессии, а на четвёртом занятии всё будем смотреть через призму соревок на Kaggle!

А также дадим вам список вопросов, которые спрашивают на собесе по логистической регрессии... 💃

В теоретической части мы потеоретизируем про:
🟡 Что такое задача классификации?
🔵 Как решать задачи бинарной классификации с помощью логистической регрессии?
🟢 Вывод логистической регрессии: вероятностный подход, метод максимального правдоподобия, геометрический смысл
🟣 Что такое регуляризация у логистической регрессии?
🟢 И какие бывают метрики бинарной классификации для меток классов и вероятностей?

А на практической части мы попрактикуемся в:
🟣 Выводе формул для логистической регрессии
🟡 Реализуем логистическую регрессию с нуля
🔵 Порешаем задачи бинарной классификации на тривиальных данных
🟢 По экспериментируем с метриками, и сделаем анализ устойчивости к балансу классов

Ученики довольны, ученики получают сошиал кредитс на собесах и всё ближе и ближе к офферу. Для записи пишите @Alexander_Isaev1
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8🍌4❤‍🔥3🥰21



tgoop.com/eboutdatascience/206
Create:
Last Update:

Теперь даже ваша собака будет понимать логистическую регрессию 🗣

Вот уже прошло второе занятие по ML от Ebout Data Science, делюсь его итогами. Мы проводим живые занятия в небольших группах (до 30 человек), где у вас есть возможность общаться с преподавателем на протяжении всего обучения 👨‍🦰

По теории мы прошли
🔘 как строить строить выборки train/val/test, и как их оценивать результаты модели
🔘 Какие бывают проблемы с данными: пропуски, выбросы, мультиколлинеарность, утечка данных
🔘Что такое недообучение и переобучение?
🔘 И что такое регуляризация линейных моделей: L1, L2, Elastic Net, и чем они оличаются?

А попрактиковались в:
🟣работе с мультиколлирированными данными на синтетическом датасете
🟡самостоятельно реализовали методы регуляризации
🔵анализировали влияние регуляризации на веса, интерпретация
🟢решили задачу на kaggle: задача на прогнозирования цены квартиры с помощью линрег

А вот отзывы учеников на второе занятие 🍷

Математическую часть объяснил довольно понятно хорошо разжеван материал, матформулы даны с понятными пояснениями

Как и в прошлый раз, практическая часть реализация на питоне с нуля - самое полезное. ещё примеры были хорошие

- то, что покрываешь тему исчерпывающе
- есть домашка полезная!

В этот раз понравился сам материал: синтез статистики и машинного обучения + очень доходчиво все было объяснено преподавателем


На третьем занятии "Классификация. Логистическая регрессия. Метрики", которые пройдёт в четверг (6 марта) с 18:00 по 19:30 - мы сделаем уклон в теорию логистической регрессии, а на четвёртом занятии всё будем смотреть через призму соревок на Kaggle!

А также дадим вам список вопросов, которые спрашивают на собесе по логистической регрессии... 💃

В теоретической части мы потеоретизируем про:
🟡 Что такое задача классификации?
🔵 Как решать задачи бинарной классификации с помощью логистической регрессии?
🟢 Вывод логистической регрессии: вероятностный подход, метод максимального правдоподобия, геометрический смысл
🟣 Что такое регуляризация у логистической регрессии?
🟢 И какие бывают метрики бинарной классификации для меток классов и вероятностей?

А на практической части мы попрактикуемся в:
🟣 Выводе формул для логистической регрессии
🟡 Реализуем логистическую регрессию с нуля
🔵 Порешаем задачи бинарной классификации на тривиальных данных
🟢 По экспериментируем с метриками, и сделаем анализ устойчивости к балансу классов

Ученики довольны, ученики получают сошиал кредитс на собесах и всё ближе и ближе к офферу. Для записи пишите @Alexander_Isaev1

BY Ebout Data Science | Дима Савелко







Share with your friend now:
tgoop.com/eboutdatascience/206

View MORE
Open in Telegram


Telegram News

Date: |

The SUCK Channel on Telegram, with a message saying some content has been removed by the police. Photo: Telegram screenshot. Content is editable within two days of publishing The best encrypted messaging apps Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. Co-founder of NFT renting protocol Rentable World emiliano.eth shared the group Tuesday morning on Twitter, calling out the "degenerate" community, or crypto obsessives that engage in high-risk trading.
from us


Telegram Ebout Data Science | Дима Савелко
FROM American