EPYTHONLAB Telegram 1995
🚀 Train Loan Prediction Models with Synthetic Data using CTGAN
📊 | #FinTech #MachineLearning #DataScience #SyntheticData #CTGAN

In real-world financial environments, access to high-quality, privacy-compliant loan data can be extremely limited due to regulatory and ethical constraints.

That’s why in my latest FinTech ML project, I explore how to train accurate loan prediction models using synthetic datasets generated by CTGAN (Conditional Tabular GAN).

đź’ˇ Why this matters:

Maintain data privacy without sacrificing model realism

Generate diverse borrower profiles and edge cases

Build ML-ready datasets with class balance and feature richness

🔍 What’s covered:

Simulate loan application data (income, credit score, loan amount, status, etc.)

Generate synthetic records using CTGAN from SDV

Train and evaluate classification models (XGBoost, RandomForest)

Compare real vs synthetic model performance

đź›  Tools: Python, Pandas, CTGAN, Scikit-learn, Matplotlib


Let’s advance ethical AI in finance—one synthetic sample at a time.
đź’¬ Curious to try synthetic data in your projects? Drop your thoughts or questions below!
https://youtu.be/cqGLJsOpNPU
👍5



tgoop.com/epythonlab/1995
Create:
Last Update:

🚀 Train Loan Prediction Models with Synthetic Data using CTGAN
📊 | #FinTech #MachineLearning #DataScience #SyntheticData #CTGAN

In real-world financial environments, access to high-quality, privacy-compliant loan data can be extremely limited due to regulatory and ethical constraints.

That’s why in my latest FinTech ML project, I explore how to train accurate loan prediction models using synthetic datasets generated by CTGAN (Conditional Tabular GAN).

đź’ˇ Why this matters:

Maintain data privacy without sacrificing model realism

Generate diverse borrower profiles and edge cases

Build ML-ready datasets with class balance and feature richness

🔍 What’s covered:

Simulate loan application data (income, credit score, loan amount, status, etc.)

Generate synthetic records using CTGAN from SDV

Train and evaluate classification models (XGBoost, RandomForest)

Compare real vs synthetic model performance

đź›  Tools: Python, Pandas, CTGAN, Scikit-learn, Matplotlib


Let’s advance ethical AI in finance—one synthetic sample at a time.
đź’¬ Curious to try synthetic data in your projects? Drop your thoughts or questions below!
https://youtu.be/cqGLJsOpNPU

BY Epython Lab


Share with your friend now:
tgoop.com/epythonlab/1995

View MORE
Open in Telegram


Telegram News

Date: |

How to create a business channel on Telegram? (Tutorial) Telegram Channels requirements & features On June 7, Perekopsky met with Brazilian President Jair Bolsonaro, an avid user of the platform. According to the firm's VP, the main subject of the meeting was "freedom of expression." For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data. It’s yet another bloodbath on Satoshi Street. As of press time, Bitcoin (BTC) and the broader cryptocurrency market have corrected another 10 percent amid a massive sell-off. Ethereum (EHT) is down a staggering 15 percent moving close to $1,000, down more than 42 percent on the weekly chart.
from us


Telegram Epython Lab
FROM American