EXPLAINING_SPACE Telegram 35
В прошлый раз мы говорили о размере орбиты. Сегодня мы перейдем к обсуждению формы орбиты и первый раз затронем ситуацию, когда орбита перестает быть замкнутой.

Замкнутая орбита имеет форму эллипса, в частности, окружности. Форму эллипса можно характеризовать через соотношение его большой и малой полуоси: чем первая больше другой, тем более вытянут эллипс. Когда они совпадают, эллипс совпадает с окружностью, а большая полуось – с радиусом окружности.

Но есть куда более удобная возможность оценить форму орбиты: математика позволяет вывести из уравнения движения тела в центральном поле параметр, который называется эксцентриситет (обозначается латинской буквой «e»).

Это величина, которая может принимать значения от нуля до бесконечности и показывает, насколько форма орбиты отличается от окружности:

Если эксцентриситет равен нулю (e = 0), то орбита – окружность
Если эксцентриситет больше нуля и меньше единицы (0 < e < 1) – это все более и более вытянутый эллипс ❷.

Если апоцентр эллиптической орбиты выходит за пределы сферы Хилла*, то уже нельзя говорить о том, что орбита остается замкнутой. Это соответствует моменту, когда эксцентриситет становится больше или равен единице:

Если эксцентриситет достиг значения 1 (e = 1) – то орбита перестала быть замкнутой и имеет форму параболы
Если эксцентриситет больше 1 (e > 1) – орбита стала гиперболой ❸ (и чем больше эксцентриситет, тем более разомкнуты ветви гиперболы, в пределе стремясь стать прямой).

И для параболы, и для гиперболы значение большой полуоси будет отрицательным, а радиус апоцентра – равным бесконечности, и говорить об их размере затруднительно.

Все перечисленные формы орбит являются коническими сечениями. В реальном мире невозможно найти ситуацию, когда объект движется точно по траекториям, которые можно описать такими идеальными орбитами, но они подходят, как начальное приближение или оценка траектории на короткое время (оскулирующая орбита).

* - при старте с поверхности этому соответствует набор второй космической скорости.

#орбитальнаямеханика



tgoop.com/explaining_space/35
Create:
Last Update:

В прошлый раз мы говорили о размере орбиты. Сегодня мы перейдем к обсуждению формы орбиты и первый раз затронем ситуацию, когда орбита перестает быть замкнутой.

Замкнутая орбита имеет форму эллипса, в частности, окружности. Форму эллипса можно характеризовать через соотношение его большой и малой полуоси: чем первая больше другой, тем более вытянут эллипс. Когда они совпадают, эллипс совпадает с окружностью, а большая полуось – с радиусом окружности.

Но есть куда более удобная возможность оценить форму орбиты: математика позволяет вывести из уравнения движения тела в центральном поле параметр, который называется эксцентриситет (обозначается латинской буквой «e»).

Это величина, которая может принимать значения от нуля до бесконечности и показывает, насколько форма орбиты отличается от окружности:

Если эксцентриситет равен нулю (e = 0), то орбита – окружность
Если эксцентриситет больше нуля и меньше единицы (0 < e < 1) – это все более и более вытянутый эллипс ❷.

Если апоцентр эллиптической орбиты выходит за пределы сферы Хилла*, то уже нельзя говорить о том, что орбита остается замкнутой. Это соответствует моменту, когда эксцентриситет становится больше или равен единице:

Если эксцентриситет достиг значения 1 (e = 1) – то орбита перестала быть замкнутой и имеет форму параболы
Если эксцентриситет больше 1 (e > 1) – орбита стала гиперболой ❸ (и чем больше эксцентриситет, тем более разомкнуты ветви гиперболы, в пределе стремясь стать прямой).

И для параболы, и для гиперболы значение большой полуоси будет отрицательным, а радиус апоцентра – равным бесконечности, и говорить об их размере затруднительно.

Все перечисленные формы орбит являются коническими сечениями. В реальном мире невозможно найти ситуацию, когда объект движется точно по траекториям, которые можно описать такими идеальными орбитами, но они подходят, как начальное приближение или оценка траектории на короткое время (оскулирующая орбита).

* - при старте с поверхности этому соответствует набор второй космической скорости.

#орбитальнаямеханика

BY Объясняем просто: космос






Share with your friend now:
tgoop.com/explaining_space/35

View MORE
Open in Telegram


Telegram News

Date: |

Telegram channels fall into two types: In handing down the sentence yesterday, deputy judge Peter Hui Shiu-keung of the district court said that even if Ng did not post the messages, he cannot shirk responsibility as the owner and administrator of such a big group for allowing these messages that incite illegal behaviors to exist. It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces.
from us


Telegram Объясняем просто: космос
FROM American