INSIDE_AI_TECH Telegram 54
Почему корпорации не любят n8n?

n8n
— ноукод-инструмент для сборки LLM-агентов и интеграционных сценариев без программирования.

Но с точки зрения корпоративного внедрения у него есть серьёзные ограничения:

— Нет версионирования. В open source-версии нельзя отслеживать изменения и безопасно откатываться к предыдущим версиям.

— Нет поддержки уровня энтерпрайз. Компании хотят сопровождение, но вендоров, которые умеют эксплуатировать n8n, почти нет.

— Вендор-лок.Если он не подойдёт, перенести сценарии на что-то другое не получится, нужно будет переделывать.

— Сложное логирование. Агентная архитектура требует прослеживать шаги выполнения. Из коробки n8n этого не умеет. В коде трейсинг и логирование сделать проще.

— Ограниченные возможности для кастомных сценариев. Разработчику зачастую проще и быстрее реализовать логику на LangChain, чем собирать её в интерфейсе n8n.

Тем не менее, для Agent Platform мы сознательно выбрали n8n как один из «агентских фреймворков».

Несмотря на ограничения, такие инструменты нужны для массового использования в продуктовых командах. Продуктам, аналитикам, маркетологам важен простой способ быстро проверить гипотезу: можно ли переложить текущий процесс на LLM. Если можно — появляется рабочий прототип, с которым уже есть смысл идти к инженерам. Они смогут превратить его в продакшен-решение с метриками.

Пример: генерация рекламных изображений.
LLM умеют генерировать картинки, но дизайнеру важно ещё адаптировать их под разные площадки и бренд-гайдлайны. Вместо долгого цикла с ресерчем и итерациями от разработчиков, он может сам собрать прототип в n8n, потестировать гипотезу — и только потом подключить инженеров. Тогда они уже перенесут это решение в продакшен, готовый к масштабированию.

Наша практика внедрения агентов показывает, что придумывать промты должен product owner. А задача инженера — сделать так, чтобы результат, который получил product owner в режиме прототипа, стал стабильным.

Поэтому мы даем n8n в руки product owner”ов, помогая им разобраться в инструменте, а потом переносим результат прототипа на n8n в промышленное решение руками инженеров, которые доводят качество и воспроизводимость до нужного уровня.

n8n даёт быстрый результат — и этого достаточно, чтобы начать. Это гибкий agile-подход. Он помогает командам запускать инициативы с ИИ быстрее и внедрять LLM в реальную работу.

#александр_опрышко #n8n
👍9🔥5



tgoop.com/inside_ai_tech/54
Create:
Last Update:

Почему корпорации не любят n8n?

n8n
— ноукод-инструмент для сборки LLM-агентов и интеграционных сценариев без программирования.

Но с точки зрения корпоративного внедрения у него есть серьёзные ограничения:

— Нет версионирования. В open source-версии нельзя отслеживать изменения и безопасно откатываться к предыдущим версиям.

— Нет поддержки уровня энтерпрайз. Компании хотят сопровождение, но вендоров, которые умеют эксплуатировать n8n, почти нет.

— Вендор-лок.Если он не подойдёт, перенести сценарии на что-то другое не получится, нужно будет переделывать.

— Сложное логирование. Агентная архитектура требует прослеживать шаги выполнения. Из коробки n8n этого не умеет. В коде трейсинг и логирование сделать проще.

— Ограниченные возможности для кастомных сценариев. Разработчику зачастую проще и быстрее реализовать логику на LangChain, чем собирать её в интерфейсе n8n.

Тем не менее, для Agent Platform мы сознательно выбрали n8n как один из «агентских фреймворков».

Несмотря на ограничения, такие инструменты нужны для массового использования в продуктовых командах. Продуктам, аналитикам, маркетологам важен простой способ быстро проверить гипотезу: можно ли переложить текущий процесс на LLM. Если можно — появляется рабочий прототип, с которым уже есть смысл идти к инженерам. Они смогут превратить его в продакшен-решение с метриками.

Пример: генерация рекламных изображений.
LLM умеют генерировать картинки, но дизайнеру важно ещё адаптировать их под разные площадки и бренд-гайдлайны. Вместо долгого цикла с ресерчем и итерациями от разработчиков, он может сам собрать прототип в n8n, потестировать гипотезу — и только потом подключить инженеров. Тогда они уже перенесут это решение в продакшен, готовый к масштабированию.

Наша практика внедрения агентов показывает, что придумывать промты должен product owner. А задача инженера — сделать так, чтобы результат, который получил product owner в режиме прототипа, стал стабильным.

Поэтому мы даем n8n в руки product owner”ов, помогая им разобраться в инструменте, а потом переносим результат прототипа на n8n в промышленное решение руками инженеров, которые доводят качество и воспроизводимость до нужного уровня.

n8n даёт быстрый результат — и этого достаточно, чтобы начать. Это гибкий agile-подход. Он помогает командам запускать инициативы с ИИ быстрее и внедрять LLM в реальную работу.

#александр_опрышко #n8n

BY Внутри AI | Кейсы ИИ Агентов в бизнесе


Share with your friend now:
tgoop.com/inside_ai_tech/54

View MORE
Open in Telegram


Telegram News

Date: |

On June 7, Perekopsky met with Brazilian President Jair Bolsonaro, an avid user of the platform. According to the firm's VP, the main subject of the meeting was "freedom of expression." Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. Select “New Channel” The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram.
from us


Telegram Внутри AI | Кейсы ИИ Агентов в бизнесе
FROM American