KNOWLEDGE_ACCUMULATOR Telegram 179
Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents [2024]

Наткнулся на ещё одну работу, в которой обучают модель-алгоритм. Её используют тут же для решения RL-задач, с результатами, по графикам сильно превосходящими VSML.

Авторы придерживаются тех же базовых принципов - мало мета-параметров (обучающихся генетикой), большое скрытое состояние. Различие в том, в какую именно архитектуру всё это запаковано. У VSML это несколько "слоёв" LSTM, сцепленных, как обычная нейронная сеть, со связями вперёд и назад.

В данной работе авторы используют более гибкую схему:

1) Есть 3 вида нейронов - входные, скрытые и выходные
2) Каждый входной нейрон может быть связан с каждым скрытым, каждый скрытый с каждым выходным
3) Перед началом обучения (то есть внутри эволюционной итерации) сэмплируются бинарные маски IxH и HxO, обозначающие наличие связи между каждым input и hidden, а также между каждым hidden и output.

А что, собственно, обучается? Чем является в данном случае "нейрон"?

Каждый нейрон принимает на вход векторы сигналов, складывает их и получает свой "Pre-neuron". Далее он домножается поэлементно на вектор w и получается post-neuron. После этого pre-neuron, post-neuron и награда из среды подаются в GRU, которая выдаёт дельту для вектора w.

Вектор w у каждого нейрона свой, а вот веса GRU у всех скрытых нейронов одинаковые. То же и с входными, и с выходными группами, но у каждой группы своя GRU.

Мне лично нравится, что такая плотно связанная сеть нейронов позволяет легко пробрасывать информацию по всей модели и быстрее обучаться своей задаче. Она содержит ещё меньше априорных допущений, чем предыдущий подход, что соответствует выводам из Bitter Lesson. Прорыв в итоге совершит подход, лучше всего балансирующий между гибкостью и эффективностью исполнения на современных GPU - иначе он падёт жертвой hardware lottery.

Из минусов статьи - нет кода, нет meta-testing (хотя сомнений в успехе у меня нет), нет описания затраченных на обучение ресурсов.

@knowledge_accumulator



tgoop.com/knowledge_accumulator/179
Create:
Last Update:

Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents [2024]

Наткнулся на ещё одну работу, в которой обучают модель-алгоритм. Её используют тут же для решения RL-задач, с результатами, по графикам сильно превосходящими VSML.

Авторы придерживаются тех же базовых принципов - мало мета-параметров (обучающихся генетикой), большое скрытое состояние. Различие в том, в какую именно архитектуру всё это запаковано. У VSML это несколько "слоёв" LSTM, сцепленных, как обычная нейронная сеть, со связями вперёд и назад.

В данной работе авторы используют более гибкую схему:

1) Есть 3 вида нейронов - входные, скрытые и выходные
2) Каждый входной нейрон может быть связан с каждым скрытым, каждый скрытый с каждым выходным
3) Перед началом обучения (то есть внутри эволюционной итерации) сэмплируются бинарные маски IxH и HxO, обозначающие наличие связи между каждым input и hidden, а также между каждым hidden и output.

А что, собственно, обучается? Чем является в данном случае "нейрон"?

Каждый нейрон принимает на вход векторы сигналов, складывает их и получает свой "Pre-neuron". Далее он домножается поэлементно на вектор w и получается post-neuron. После этого pre-neuron, post-neuron и награда из среды подаются в GRU, которая выдаёт дельту для вектора w.

Вектор w у каждого нейрона свой, а вот веса GRU у всех скрытых нейронов одинаковые. То же и с входными, и с выходными группами, но у каждой группы своя GRU.

Мне лично нравится, что такая плотно связанная сеть нейронов позволяет легко пробрасывать информацию по всей модели и быстрее обучаться своей задаче. Она содержит ещё меньше априорных допущений, чем предыдущий подход, что соответствует выводам из Bitter Lesson. Прорыв в итоге совершит подход, лучше всего балансирующий между гибкостью и эффективностью исполнения на современных GPU - иначе он падёт жертвой hardware lottery.

Из минусов статьи - нет кода, нет meta-testing (хотя сомнений в успехе у меня нет), нет описания затраченных на обучение ресурсов.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tgoop.com/knowledge_accumulator/179

View MORE
Open in Telegram


Telegram News

Date: |

The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be: How to Create a Private or Public Channel on Telegram? During a meeting with the president of the Supreme Electoral Court (TSE) on June 6, Telegram's Vice President Ilya Perekopsky announced the initiatives. According to the executive, Brazil is the first country in the world where Telegram is introducing the features, which could be expanded to other countries facing threats to democracy through the dissemination of false content. Find your optimal posting schedule and stick to it. The peak posting times include 8 am, 6 pm, and 8 pm on social media. Try to publish serious stuff in the morning and leave less demanding content later in the day. Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators.
from us


Telegram Knowledge Accumulator
FROM American