KNOWLEDGE_ACCUMULATOR Telegram 34
AlphaZero [2018] - история о плодотворной дружбе поиска и глубокого обучения

Обобщая, есть 2 поколения подходов в настольных играх:

1) Поиск по всем вариантам с оптимизациями
Шахматные алгоритмы, начиная с появления компьютеров, как минимум до Deep Blue [1997], работали на основе таких подходов. В глубине души они по эффективности похожи на полный перебор, но засчёт хитростей (вроде дебютной книги и эвристических оценок позиций в листьях дерева поиска) алгоритмам удаётся как-то работать.

2) Направленный поиск с помощью обучаемой функции полезности
Именно в этом и состояла революция AlphaGo (и её потомка AlphaZero). Оказалось, что обучаемая функция полезности действия в данной позиции позволяет перебирать радикально меньше вариантов ходов из каждой позиции. Она позволяет строить дерево поиска на больше ходов вперёд, потому что мы грамотно выбираем ходы при переборе.
Что интересно, обучается данная функция довольно просто - достаточно генерировать данные, садя алгоритм играть против себя же и своих прошлых итераций, и учить её предсказывать результат игры. В результате система легко обходит человека в шахматы и го.

Слабые точки AlphaZero понятны - требует много данных, обучается отдельно под одну игру. Но все революции за раз не совершить!

@knowledge_accumulator



tgoop.com/knowledge_accumulator/34
Create:
Last Update:

AlphaZero [2018] - история о плодотворной дружбе поиска и глубокого обучения

Обобщая, есть 2 поколения подходов в настольных играх:

1) Поиск по всем вариантам с оптимизациями
Шахматные алгоритмы, начиная с появления компьютеров, как минимум до Deep Blue [1997], работали на основе таких подходов. В глубине души они по эффективности похожи на полный перебор, но засчёт хитростей (вроде дебютной книги и эвристических оценок позиций в листьях дерева поиска) алгоритмам удаётся как-то работать.

2) Направленный поиск с помощью обучаемой функции полезности
Именно в этом и состояла революция AlphaGo (и её потомка AlphaZero). Оказалось, что обучаемая функция полезности действия в данной позиции позволяет перебирать радикально меньше вариантов ходов из каждой позиции. Она позволяет строить дерево поиска на больше ходов вперёд, потому что мы грамотно выбираем ходы при переборе.
Что интересно, обучается данная функция довольно просто - достаточно генерировать данные, садя алгоритм играть против себя же и своих прошлых итераций, и учить её предсказывать результат игры. В результате система легко обходит человека в шахматы и го.

Слабые точки AlphaZero понятны - требует много данных, обучается отдельно под одну игру. Но все революции за раз не совершить!

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tgoop.com/knowledge_accumulator/34

View MORE
Open in Telegram


Telegram News

Date: |

fire bomb molotov November 18 Dylan Hollingsworth yau ma tei When choosing the right name for your Telegram channel, use the language of your target audience. The name must sum up the essence of your channel in 1-3 words. If you’re planning to expand your Telegram audience, it makes sense to incorporate keywords into your name. Your posting frequency depends on the topic of your channel. If you have a news channel, it’s OK to publish new content every day (or even every hour). For other industries, stick with 2-3 large posts a week. Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN. The SUCK Channel on Telegram, with a message saying some content has been removed by the police. Photo: Telegram screenshot.
from us


Telegram Knowledge Accumulator
FROM American