LEVELS_OF_ABSTRACTION Telegram 84
Artificial life forms в компьютерных симуляциях

в выходные закончил обещанный обзор статьи Sakana AI, который давно обещал сделать, прошу прощения! свободного времени мало, и становится только меньше. а текст вырос в лонгрид. пробно опубликовал его на хабре — иллюстрации тут сильно помогают. если вы там бываете, буду рад плюсам и комментариям. а ниже саммари для вас любимых, погнали 👽

Рисерчеры из Sakana AI, которые до этого наделали много шума со своим ИИ-ученым, автономно генерирующим правдоподобные научные статьи, исследуют разные области науки, где ИИ может дать заметный толчок. поиск искусcтвенных форм жизни в компьютерных симуляциях оказался одной из них. мотивация для всей области следующая

— изучать жизнь не только какой мы ее знаем, но и такой какой она могла бы быть
— ну и создать голема, пускай цифрового, потому что это давняя мечта любого алхимика

я до этого рассказывал про игру “Жизнь” Конвея, где поиск своеобразных форм жизни (глайдеров, осцилляторов и космических кораблей) происходит уже 54 года силами энтузиастов. при этом “Жизнь” — только частный случай подобных симуляций, есть более сложные, и намного менее исследованные: Boids, Lenia, ParticleLife, Neural Cellular Automata и другие, отличающимися правилами перехода пикселей из живых в мертвые и обратно, детали со ссылками статье

ключевая проблема в том, что с такими эволюционирующими хаотическими системами очень сложно предсказывать как они будут развиваться. и еще сложнее специально задать условия, которые приведут к интересным результатам, например зарождению той самой "жизни", как бы вы ее не определяли. при этом у каждой симуляции, заданной даже простыми правилами, есть десятки тысяч комбинаций параметров (соседи не в квадрате, а в круге, погибает не при 4 соседях а при 5, и так далее). то есть мало того, что нужно эти симуляции нужно просчитывать на тысячи шагов времени вперед, так нужно это делать для тысяч комбинаций входных параметров каждой из них, что превращает задачу поиска интересных форм эволюции в них сопоставимой по относительным масштабам поиску внеземного разума в открытом космосе

и вот тут на помощь пришел ИИ. Sakana взяли опен-сорсную модель CLIP (Contrastive Language–Image Pre-training) от openAI, которая была обучена для генерации текстовых описаний изображений в духе "на этой фотографии три человека стоят у барной стойки". это позволило исследователям программировать поиск "жизни" текстом, то есть буквально “ищи изображения похожие на клетки под микроскопом” или "нечто похожее на скопления нейронов". и она нашла!

такой подход авторы назвали ASAL — Automated Search for Artificial Life, и он позволил в каждой из упомянутых симуляций найти новые формы жизни, иногда удивительно похожие на биологические объекты — клетки, вирусы, бактерии, скопления нейронов. другое направлений исследований — поиск симуляций, где сложность форм жизни продолжает расти со временем неограниченно, прямо как в нашей с вами. здесь был предложен метод сведения этой сложности, которая очень плохо формализуема классическими алгоритмами, к численным метрика в пространстве эмбеддингов CLIP

при этом все описанные выше симуляции определяются очень простыми правилами двумерного мира и ничего не знают о биологии, поэтому случайное образование кластеров пикселей, сильно похожих на бактерии и вирусы — конечно может оказаться невероятным совпадением или артефактом постановки эксперимента (что искали в хаотичной системе, то и нашли), но также могут обозначить границы нового раздела науки, изучающего внутреннюю динамику этих микромиров, которые могут оказаться не менее богатыми, чем наш собственный (если поддерживать вычисления пару миллиардов лет)

мой полный текст: https://habr.com/ru/articles/879230/
ссылка на оригинальную статью и гитхаб

#AI #automated_research #evolution #complexity
🔥121🗿1



tgoop.com/levels_of_abstraction/84
Create:
Last Update:

Artificial life forms в компьютерных симуляциях

в выходные закончил обещанный обзор статьи Sakana AI, который давно обещал сделать, прошу прощения! свободного времени мало, и становится только меньше. а текст вырос в лонгрид. пробно опубликовал его на хабре — иллюстрации тут сильно помогают. если вы там бываете, буду рад плюсам и комментариям. а ниже саммари для вас любимых, погнали 👽

Рисерчеры из Sakana AI, которые до этого наделали много шума со своим ИИ-ученым, автономно генерирующим правдоподобные научные статьи, исследуют разные области науки, где ИИ может дать заметный толчок. поиск искусcтвенных форм жизни в компьютерных симуляциях оказался одной из них. мотивация для всей области следующая

— изучать жизнь не только какой мы ее знаем, но и такой какой она могла бы быть
— ну и создать голема, пускай цифрового, потому что это давняя мечта любого алхимика

я до этого рассказывал про игру “Жизнь” Конвея, где поиск своеобразных форм жизни (глайдеров, осцилляторов и космических кораблей) происходит уже 54 года силами энтузиастов. при этом “Жизнь” — только частный случай подобных симуляций, есть более сложные, и намного менее исследованные: Boids, Lenia, ParticleLife, Neural Cellular Automata и другие, отличающимися правилами перехода пикселей из живых в мертвые и обратно, детали со ссылками статье

ключевая проблема в том, что с такими эволюционирующими хаотическими системами очень сложно предсказывать как они будут развиваться. и еще сложнее специально задать условия, которые приведут к интересным результатам, например зарождению той самой "жизни", как бы вы ее не определяли. при этом у каждой симуляции, заданной даже простыми правилами, есть десятки тысяч комбинаций параметров (соседи не в квадрате, а в круге, погибает не при 4 соседях а при 5, и так далее). то есть мало того, что нужно эти симуляции нужно просчитывать на тысячи шагов времени вперед, так нужно это делать для тысяч комбинаций входных параметров каждой из них, что превращает задачу поиска интересных форм эволюции в них сопоставимой по относительным масштабам поиску внеземного разума в открытом космосе

и вот тут на помощь пришел ИИ. Sakana взяли опен-сорсную модель CLIP (Contrastive Language–Image Pre-training) от openAI, которая была обучена для генерации текстовых описаний изображений в духе "на этой фотографии три человека стоят у барной стойки". это позволило исследователям программировать поиск "жизни" текстом, то есть буквально “ищи изображения похожие на клетки под микроскопом” или "нечто похожее на скопления нейронов". и она нашла!

такой подход авторы назвали ASAL — Automated Search for Artificial Life, и он позволил в каждой из упомянутых симуляций найти новые формы жизни, иногда удивительно похожие на биологические объекты — клетки, вирусы, бактерии, скопления нейронов. другое направлений исследований — поиск симуляций, где сложность форм жизни продолжает расти со временем неограниченно, прямо как в нашей с вами. здесь был предложен метод сведения этой сложности, которая очень плохо формализуема классическими алгоритмами, к численным метрика в пространстве эмбеддингов CLIP

при этом все описанные выше симуляции определяются очень простыми правилами двумерного мира и ничего не знают о биологии, поэтому случайное образование кластеров пикселей, сильно похожих на бактерии и вирусы — конечно может оказаться невероятным совпадением или артефактом постановки эксперимента (что искали в хаотичной системе, то и нашли), но также могут обозначить границы нового раздела науки, изучающего внутреннюю динамику этих микромиров, которые могут оказаться не менее богатыми, чем наш собственный (если поддерживать вычисления пару миллиардов лет)

мой полный текст: https://habr.com/ru/articles/879230/
ссылка на оригинальную статью и гитхаб

#AI #automated_research #evolution #complexity

BY уровни абстракции




Share with your friend now:
tgoop.com/levels_of_abstraction/84

View MORE
Open in Telegram


Telegram News

Date: |

For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data. Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019. Don’t publish new content at nighttime. Since not all users disable notifications for the night, you risk inadvertently disturbing them. How to create a business channel on Telegram? (Tutorial) Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau.
from us


Telegram уровни абстракции
FROM American