LLM_UNDER_HOOD Telegram 620
Schema-Guided Reasoning (SGR)

это метод структурированного промптинга, в котором заранее заданные схемы управляют рассуждениями больших языковых моделей, явно кодируя экспертные когнитивные процессы в процессе вывода.

Update: набор материалов про SGR лежит тут.


Да, это тот самый SO CoT/Custom CoT, про который мы уже год говорим в нашем комьюнити. Только Custom Chain of Thought, несколько путает людей, а ведь паттерн позволяет паковать довольно сложные нелинейные рассуждения в один промпт.

Если более формально, то подход Schema-Guided Reasoning (SGR) позволяет управлять LLM, задавая явные сценарии рассуждений через типизированные схемы вывода. Constrained decoding вынудит модель последовательно заполнять эти схемы, а значит мы будет контроллировать не только финальную организацию информации, но и весь процесс.

Вместо расплывчатых инструкций (которые модель может игнорировать) вы прямо задаёте, как именно модель должна подходить к решению сложной задачи: от предварительного анализа до промежуточных проверок и сбора доказательств — фактически превращая ментальные чеклисты экспертов в строго заданные структуры.

Используя схемы (Structured Output/Constrained Decoding) вы получаете предсказуемые и контролируемые рассуждения, можете точно оценивать промежуточные результаты (evals), повышать качество и делать ход рассуждений модели - более прозрачным.

В схему можно закладывать не только онтологии (например, enums), но и ветвления (tagged unions in Pydantic), процедуры (nested objects), циклы (lists) и некоторые дополнительные ограничения (см иллюстрацию)

Почему это полезно:

(1) получаем более стабильные результаты при повторных вызовах, даже на разных моделях
(2) каждый шаг рассуждения становится явным и доступным для анализа.
(3) появляется возможность прямой оценки и улучшения промежуточных шагов (типизированные поля не требуют LLM-as-a-judge). А дальше - см quality is a trajectory.
(4) можно преобразовывать экспертный опыт и чеклисты в исполняемые сценарии. Сюда хорошо ложится DDD метолодогия.
(5) нередко получается прирост точности в 5-10% за счет контроля и возможности видеть цепочку рассуждений
(!) Повышается качество слабых моделей - особенно локальных (без SGR с ними работать почти невозможно)

Технология хорошо поддерживается OpenAI, Mistral, Fireworks AI и современными локальными движками для inference (например, vLLM, ollama, TensorRT). Gemini поддерживает частично.

Ваш, @llm_under_hood 🤗
👍79🔥3518💯9🤔2



tgoop.com/llm_under_hood/620
Create:
Last Update:

Schema-Guided Reasoning (SGR)

это метод структурированного промптинга, в котором заранее заданные схемы управляют рассуждениями больших языковых моделей, явно кодируя экспертные когнитивные процессы в процессе вывода.

Update: набор материалов про SGR лежит тут.


Да, это тот самый SO CoT/Custom CoT, про который мы уже год говорим в нашем комьюнити. Только Custom Chain of Thought, несколько путает людей, а ведь паттерн позволяет паковать довольно сложные нелинейные рассуждения в один промпт.

Если более формально, то подход Schema-Guided Reasoning (SGR) позволяет управлять LLM, задавая явные сценарии рассуждений через типизированные схемы вывода. Constrained decoding вынудит модель последовательно заполнять эти схемы, а значит мы будет контроллировать не только финальную организацию информации, но и весь процесс.

Вместо расплывчатых инструкций (которые модель может игнорировать) вы прямо задаёте, как именно модель должна подходить к решению сложной задачи: от предварительного анализа до промежуточных проверок и сбора доказательств — фактически превращая ментальные чеклисты экспертов в строго заданные структуры.

Используя схемы (Structured Output/Constrained Decoding) вы получаете предсказуемые и контролируемые рассуждения, можете точно оценивать промежуточные результаты (evals), повышать качество и делать ход рассуждений модели - более прозрачным.

В схему можно закладывать не только онтологии (например, enums), но и ветвления (tagged unions in Pydantic), процедуры (nested objects), циклы (lists) и некоторые дополнительные ограничения (см иллюстрацию)

Почему это полезно:

(1) получаем более стабильные результаты при повторных вызовах, даже на разных моделях
(2) каждый шаг рассуждения становится явным и доступным для анализа.
(3) появляется возможность прямой оценки и улучшения промежуточных шагов (типизированные поля не требуют LLM-as-a-judge). А дальше - см quality is a trajectory.
(4) можно преобразовывать экспертный опыт и чеклисты в исполняемые сценарии. Сюда хорошо ложится DDD метолодогия.
(5) нередко получается прирост точности в 5-10% за счет контроля и возможности видеть цепочку рассуждений
(!) Повышается качество слабых моделей - особенно локальных (без SGR с ними работать почти невозможно)

Технология хорошо поддерживается OpenAI, Mistral, Fireworks AI и современными локальными движками для inference (например, vLLM, ollama, TensorRT). Gemini поддерживает частично.

Ваш, @llm_under_hood 🤗

BY LLM под капотом


Share with your friend now:
tgoop.com/llm_under_hood/620

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? Add up to 50 administrators Public channels are public to the internet, regardless of whether or not they are subscribed. A public channel is displayed in search results and has a short address (link). Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau. Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021.
from us


Telegram LLM под капотом
FROM American