Warning: file_put_contents(aCache/aDaily/post/llmsecurity/-472-473-474-475-476-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
llm security и каланы@llmsecurity P.475
LLMSECURITY Telegram 475
Evaluating Large Language Models' Capability to Launch Fully Automated Spear Phishing Campaigns: Validated on Human Subjects
Heiding et al., 2024
Статья

Одно из наиболее часто упоминаемых применений LLM для offensive-целей – это генерация таргетированного почтового фишинга. Об этом говорили еще с GPT-2, и без остановки пишут после выхода ChatGPT, однако явных признаков автоматизированных spearphishing-атак пока не было: люди и так клюют на обычный фишинг, а для таргетированного надежнее и проще написать письмо самому. В статье, среди авторов которой широко известный в широких кругах Брюс Шнайер, исследователи демонстрируют, что начиная примерно с текущего поколения использование LLM для этих целей имеет экономический смысл, а эффективность полностью автоматически созданных писем выросла с поправкой на дизайн эксперимента до уровня созданных вручную.

В рамках исследования авторы создают специальный инструмент, который автоматизирует сразу несколько стадий симуляции целевой атаки. Он использует поисковые инструменты вместе с gpt-4o, чтобы по имени и некоторым дополнительным данным собрать данные и сгенерировать профиль цели. После сбора профиля он использует базу промптов, с помощью которых на основе темплейта генерируются собственно таргетированные фишинговые письма, которые содержат трекинговую ссылку для оценки click-through-rate. Наконец, предоставляется функционал отчетов. С нами инструментами, к сожалению или к счастью, не поделятся. Отмечается, что особых усилий для того, чтобы заставить модель генерировать фишинговые письма или заниматься разведкой не потребовалось, что ставит под сомнение значимость всяких FraudGPT, ShadowGPT и прочих джейлбрейкнутых из коробки LLM.

Для оценки результативности исследователи за пятидолларовую подарочную карту или благотворительное пожертвование вылавливают студентов в окрестностях Гарварда, предлагая им участие в исследовании таргетированных рекламных сообщений (про фишинг им не сообщают, чтобы не портить результаты). У них собирают имя, место работы/учебы и сферу научных интересов. Подробный профиль собирается автоматизированно с помощью упомянутого инструмента на базе gpt-4o, интегрированной с гугловым поисковым API. Участников делят на четыре группы: контрольная (получит слабоспециализированный спам), human expert (получат органический free-range фишинг от человека), AI-automated и human-in-the-loop (как AI-automated, но человек исправляет/дополняет ошибки).

Письма, что отдельно отмечают авторы, создавались на основе принципов из книг Чалдини (который писал про «психологию влияния») и V-триады – набора правил для составления фишинга, названной так в честь господина Вишваната, одного из авторов статьи. Поскольку триада предполагается как априорное знание, широко всем известное, пришлось скачать его книгу и сделать скриншот (все для подписчиков 🤗). Это касается как ручных попыток, так и задачи, которая ставилась LLM в рамках промпта. К сожалению, “sophisticated prompt template exceeding 2000 characters, carefully designed to maximize the persuasiveness” тоже нам не покажут из-за “security considerations”. В гибридном сценарии люди исправляли или результаты поиска, или формулировки в письме, но в осноном проблемы были именно с первым этапом.
👍3



tgoop.com/llmsecurity/475
Create:
Last Update:

Evaluating Large Language Models' Capability to Launch Fully Automated Spear Phishing Campaigns: Validated on Human Subjects
Heiding et al., 2024
Статья

Одно из наиболее часто упоминаемых применений LLM для offensive-целей – это генерация таргетированного почтового фишинга. Об этом говорили еще с GPT-2, и без остановки пишут после выхода ChatGPT, однако явных признаков автоматизированных spearphishing-атак пока не было: люди и так клюют на обычный фишинг, а для таргетированного надежнее и проще написать письмо самому. В статье, среди авторов которой широко известный в широких кругах Брюс Шнайер, исследователи демонстрируют, что начиная примерно с текущего поколения использование LLM для этих целей имеет экономический смысл, а эффективность полностью автоматически созданных писем выросла с поправкой на дизайн эксперимента до уровня созданных вручную.

В рамках исследования авторы создают специальный инструмент, который автоматизирует сразу несколько стадий симуляции целевой атаки. Он использует поисковые инструменты вместе с gpt-4o, чтобы по имени и некоторым дополнительным данным собрать данные и сгенерировать профиль цели. После сбора профиля он использует базу промптов, с помощью которых на основе темплейта генерируются собственно таргетированные фишинговые письма, которые содержат трекинговую ссылку для оценки click-through-rate. Наконец, предоставляется функционал отчетов. С нами инструментами, к сожалению или к счастью, не поделятся. Отмечается, что особых усилий для того, чтобы заставить модель генерировать фишинговые письма или заниматься разведкой не потребовалось, что ставит под сомнение значимость всяких FraudGPT, ShadowGPT и прочих джейлбрейкнутых из коробки LLM.

Для оценки результативности исследователи за пятидолларовую подарочную карту или благотворительное пожертвование вылавливают студентов в окрестностях Гарварда, предлагая им участие в исследовании таргетированных рекламных сообщений (про фишинг им не сообщают, чтобы не портить результаты). У них собирают имя, место работы/учебы и сферу научных интересов. Подробный профиль собирается автоматизированно с помощью упомянутого инструмента на базе gpt-4o, интегрированной с гугловым поисковым API. Участников делят на четыре группы: контрольная (получит слабоспециализированный спам), human expert (получат органический free-range фишинг от человека), AI-automated и human-in-the-loop (как AI-automated, но человек исправляет/дополняет ошибки).

Письма, что отдельно отмечают авторы, создавались на основе принципов из книг Чалдини (который писал про «психологию влияния») и V-триады – набора правил для составления фишинга, названной так в честь господина Вишваната, одного из авторов статьи. Поскольку триада предполагается как априорное знание, широко всем известное, пришлось скачать его книгу и сделать скриншот (все для подписчиков 🤗). Это касается как ручных попыток, так и задачи, которая ставилась LLM в рамках промпта. К сожалению, “sophisticated prompt template exceeding 2000 characters, carefully designed to maximize the persuasiveness” тоже нам не покажут из-за “security considerations”. В гибридном сценарии люди исправляли или результаты поиска, или формулировки в письме, но в осноном проблемы были именно с первым этапом.

BY llm security и каланы








Share with your friend now:
tgoop.com/llmsecurity/475

View MORE
Open in Telegram


Telegram News

Date: |

The creator of the channel becomes its administrator by default. If you need help managing your channel, you can add more administrators from your subscriber base. You can provide each admin with limited or full rights to manage the channel. For example, you can allow an administrator to publish and edit content while withholding the right to add new subscribers. Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group. 3How to create a Telegram channel? As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces. Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.”
from us


Telegram llm security и каланы
FROM American