MACHINELEARNING_BOOKS Telegram 1097
Forwarded from Machinelearning
🌟 MoVieS: Синтез 4D-видов с учетом движения.

ByteDance в соавторстве с Пекинским университетом и Карнеги Меллон разработали MoVieS, feed-forward модель, которая из обычного монокулярного видео за секунду синтезирует полноценную 4D-сцену, объединяя в себе геометрию, внешний вид и, что самое важное, движение.

В основе метода лежит идея представления динамической сцены с помощью «динамических сплэттер-пикселей». Если вы знакомы с 3D Gaussian Splatting, то поймете сразу: модель представляет каждый пиксель входного видео как гауссов примитив в 3D-пространстве.

Новизна MoVieS в том, что она не просто определяет их статичные параметры (положение, цвет, прозрачность), но и предсказывает вектор их движения во времени. Иными словами, для каждой частицы в сцене модель знает, где она будет в любой заданный момент.

Архитектурно MoVieS построена на геометрически предобученном трансформере VGGT, который обрабатывает кадры видео. Далее в дело вступают три специализированные «головы»:

🟠Depth Head - предсказывает карту глубины;

🟠Splatter Head - отвечает за атрибуты самих гауссовых сплэттеров для рендеринга;

🟢Motion Head - самая главная, оценивает смещение каждого примитива.

Такой единый фреймворк позволяет обучать модель на самых разнородных датасетах: где-то есть разметка глубины, где-то - трекинг точек, а где-то - только видео.

MoVieS - это еще про скорость. Согласно техотчету, на генерацию сцены уходит меньше секунды (0.93 с), тогда как у альтернативных методов на это уходят десятки минут.

При этом качество на бенчмарках динамических сцен (DyCheck и NVIDIA) либо на уровне, либо превосходит SOTA решения.

Но самое интересное - это zero-shot возможности. Модель, обученная по сути на задаче синтеза новых ракурсов, внезапно оказывается способна без всякого дополнительного обучения сегментировать движущиеся объекты и оценивать scene flow (попиксельный поток в 3D). Достаточно просто посмотреть на предсказанные векторы движения.

⚠️ Кода для инференса, обучения и чекпоинтов пока нет, но обещают.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #4D #MoVieS #ByteDance
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4🔥1



tgoop.com/machinelearning_books/1097
Create:
Last Update:

🌟 MoVieS: Синтез 4D-видов с учетом движения.

ByteDance в соавторстве с Пекинским университетом и Карнеги Меллон разработали MoVieS, feed-forward модель, которая из обычного монокулярного видео за секунду синтезирует полноценную 4D-сцену, объединяя в себе геометрию, внешний вид и, что самое важное, движение.

В основе метода лежит идея представления динамической сцены с помощью «динамических сплэттер-пикселей». Если вы знакомы с 3D Gaussian Splatting, то поймете сразу: модель представляет каждый пиксель входного видео как гауссов примитив в 3D-пространстве.

Новизна MoVieS в том, что она не просто определяет их статичные параметры (положение, цвет, прозрачность), но и предсказывает вектор их движения во времени. Иными словами, для каждой частицы в сцене модель знает, где она будет в любой заданный момент.

Архитектурно MoVieS построена на геометрически предобученном трансформере VGGT, который обрабатывает кадры видео. Далее в дело вступают три специализированные «головы»:

🟠Depth Head - предсказывает карту глубины;

🟠Splatter Head - отвечает за атрибуты самих гауссовых сплэттеров для рендеринга;

🟢Motion Head - самая главная, оценивает смещение каждого примитива.

Такой единый фреймворк позволяет обучать модель на самых разнородных датасетах: где-то есть разметка глубины, где-то - трекинг точек, а где-то - только видео.

MoVieS - это еще про скорость. Согласно техотчету, на генерацию сцены уходит меньше секунды (0.93 с), тогда как у альтернативных методов на это уходят десятки минут.

При этом качество на бенчмарках динамических сцен (DyCheck и NVIDIA) либо на уровне, либо превосходит SOTA решения.

Но самое интересное - это zero-shot возможности. Модель, обученная по сути на задаче синтеза новых ракурсов, внезапно оказывается способна без всякого дополнительного обучения сегментировать движущиеся объекты и оценивать scene flow (попиксельный поток в 3D). Достаточно просто посмотреть на предсказанные векторы движения.

⚠️ Кода для инференса, обучения и чекпоинтов пока нет, но обещают.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #4D #MoVieS #ByteDance

BY Машиннное обучение | Наука о данных Библиотека





Share with your friend now:
tgoop.com/machinelearning_books/1097

View MORE
Open in Telegram


Telegram News

Date: |

Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.” In the “Bear Market Screaming Therapy Group” on Telegram, members are only allowed to post voice notes of themselves screaming. Anything else will result in an instant ban from the group, which currently has about 75 members. How to Create a Private or Public Channel on Telegram? Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN.
from us


Telegram Машиннное обучение | Наука о данных Библиотека
FROM American