MACHINELEARNING_INTERVIEW Telegram 1665
⚡️ SpatialLM-Llama-1B от Manycore Research – это 3D модель, предназначенная для обработки 3D облаков точек и генерации структурированных представлений 3D сцен.

📌 Обработка 3D данных:
Модель способна интерпретировать неструктурированные 3D данные, полученные из различных источников (например, монохромных видеопоследовательностей, RGBD изображений, LiDAR-сенсоров), и преобразовывать их в понятные архитектурные элементы (стены, двери, окна) и ориентированные ограничивающие рамки объектов с семантической категоризацией. Это позволяет создавать высокоуровневые семантические описания сложных сцен.

📌 Мультимодальный подход:
Проект объединяет различные типы входных данных, что значительно расширяет возможности анализа и интерпретации пространственных данных. Это делает модель полезной для приложений в робототехнике, автономной навигации и других задачах, связанных с 3D анализом.

📌 Технические детали:
Основана на модели Llama3.2-1B-Instruct, что обеспечивает высокий уровень генерации текста и семантического понимания.
Модель имеет 1.25 млрд параметров и использует современные библиотеки, такие как TorchSparse, для эффективной работы с разреженными данными.
Проект включает инструменты для визуализации результатов и оценки качества работы модели с использованием специального тестового набора SpatialLM-Testset.
Практическая применимость:
SpatialLM-Llama-1B может быть использована для автоматизации анализа 3D сцен, что особенно актуально в областях, требующих точного пространственного понимания, например, при создании цифровых двойников зданий, в архитектуре, а также в системах автономного управления.

https://huggingface.co/manycore-research/SpatialLM-Llama-1B

#SpatialLM #ml #ai
6👍3🔥3



tgoop.com/machinelearning_interview/1665
Create:
Last Update:

⚡️ SpatialLM-Llama-1B от Manycore Research – это 3D модель, предназначенная для обработки 3D облаков точек и генерации структурированных представлений 3D сцен.

📌 Обработка 3D данных:
Модель способна интерпретировать неструктурированные 3D данные, полученные из различных источников (например, монохромных видеопоследовательностей, RGBD изображений, LiDAR-сенсоров), и преобразовывать их в понятные архитектурные элементы (стены, двери, окна) и ориентированные ограничивающие рамки объектов с семантической категоризацией. Это позволяет создавать высокоуровневые семантические описания сложных сцен.

📌 Мультимодальный подход:
Проект объединяет различные типы входных данных, что значительно расширяет возможности анализа и интерпретации пространственных данных. Это делает модель полезной для приложений в робототехнике, автономной навигации и других задачах, связанных с 3D анализом.

📌 Технические детали:
Основана на модели Llama3.2-1B-Instruct, что обеспечивает высокий уровень генерации текста и семантического понимания.
Модель имеет 1.25 млрд параметров и использует современные библиотеки, такие как TorchSparse, для эффективной работы с разреженными данными.
Проект включает инструменты для визуализации результатов и оценки качества работы модели с использованием специального тестового набора SpatialLM-Testset.
Практическая применимость:
SpatialLM-Llama-1B может быть использована для автоматизации анализа 3D сцен, что особенно актуально в областях, требующих точного пространственного понимания, например, при создании цифровых двойников зданий, в архитектуре, а также в системах автономного управления.

https://huggingface.co/manycore-research/SpatialLM-Llama-1B

#SpatialLM #ml #ai

BY Machine learning Interview




Share with your friend now:
tgoop.com/machinelearning_interview/1665

View MORE
Open in Telegram


Telegram News

Date: |

The best encrypted messaging apps How to create a business channel on Telegram? (Tutorial) 4How to customize a Telegram channel? Write your hashtags in the language of your target audience. “Hey degen, are you stressed? Just let it all out,” he wrote, along with a link to join the group.
from us


Telegram Machine learning Interview
FROM American