MACHINELEARNINGNET2 Telegram 493
Forwarded from فینپای | FinPy
#فراخوان_مقاله

▫️از ۳۰ مقاله که برای این فراخوان صد هزار دلاری ارسال شده بود، ۵ مقاله برای ارائه و تصمیم گیری نهایی انتخاب شده. با افتخار یه تیم نویسندگان ایرانی هم در این لیست حاضره که ارائه شون امروز ساعت ۱۸:۳۰ به وقت ایران خواهد بود. شرکت برای عموم با ثبت نام امکان پذیر هست. لیست مقالات و تاریخ ارائه شون در تصویر اومده. دانلود مقالات هم از طریق لینک های زیر مُیَسّره:

- Modeling Systemic Risk: A Time-Varying Nonparametric Causal Inference Framework by Jalal Etesami, Ali Habibnia, Negar Kiyavash

- Building Probabilistic Causal Models using Collective Intelligence by Olav Laudy, Alexander Denev, Allen Ginsberg

- Causal Discovery in Financial Markets: A Framework for Nonstationary Time-Series Data by Agathe Sadegh, Achintya Gopal, Mohammad Fesanghary

- Discovering Causal Models with Optimization: Confounders, Cycles, and Instrument Validity by Frederick Eberhardt, Nur Kaynar, Auyon Siddiq

- Getting More for Less - Better A/B Testing via Causal Regularization by Kevin Webster, Nicholas Westray

@FinPy
3👍1🤩1



tgoop.com/machinelearningnet2/493
Create:
Last Update:

#فراخوان_مقاله

▫️از ۳۰ مقاله که برای این فراخوان صد هزار دلاری ارسال شده بود، ۵ مقاله برای ارائه و تصمیم گیری نهایی انتخاب شده. با افتخار یه تیم نویسندگان ایرانی هم در این لیست حاضره که ارائه شون امروز ساعت ۱۸:۳۰ به وقت ایران خواهد بود. شرکت برای عموم با ثبت نام امکان پذیر هست. لیست مقالات و تاریخ ارائه شون در تصویر اومده. دانلود مقالات هم از طریق لینک های زیر مُیَسّره:

- Modeling Systemic Risk: A Time-Varying Nonparametric Causal Inference Framework by Jalal Etesami, Ali Habibnia, Negar Kiyavash

- Building Probabilistic Causal Models using Collective Intelligence by Olav Laudy, Alexander Denev, Allen Ginsberg

- Causal Discovery in Financial Markets: A Framework for Nonstationary Time-Series Data by Agathe Sadegh, Achintya Gopal, Mohammad Fesanghary

- Discovering Causal Models with Optimization: Confounders, Cycles, and Instrument Validity by Frederick Eberhardt, Nur Kaynar, Auyon Siddiq

- Getting More for Less - Better A/B Testing via Causal Regularization by Kevin Webster, Nicholas Westray

@FinPy

BY @machinelearningnet




Share with your friend now:
tgoop.com/machinelearningnet2/493

View MORE
Open in Telegram


Telegram News

Date: |

Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. During the meeting with TSE Minister Edson Fachin, Perekopsky also mentioned the TSE channel on the platform as one of the firm's key success stories. Launched as part of the company's commitments to tackle the spread of fake news in Brazil, the verified channel has attracted more than 184,000 members in less than a month. The SUCK Channel on Telegram, with a message saying some content has been removed by the police. Photo: Telegram screenshot. During a meeting with the president of the Supreme Electoral Court (TSE) on June 6, Telegram's Vice President Ilya Perekopsky announced the initiatives. According to the executive, Brazil is the first country in the world where Telegram is introducing the features, which could be expanded to other countries facing threats to democracy through the dissemination of false content. “[The defendant] could not shift his criminal liability,” Hui said.
from us


Telegram @machinelearningnet
FROM American