MACHINELEARNINGNET2 Telegram 520
مجموعه جلسات «گذر»

💠عنوان:
"Probabilistic Programming for Machine Learning"

🎙 ارائه‌دهنده:
امیرعباس اسدی

🔻توضیحات:
Bayesian Learning provides a natural framework for approaching Machine Learning problems. For a long time, due to the significant computational cost of Bayesian inference, this framework was limited to simple models and problems with a small amount of data. Probabilistic Programming is the fruit of many years of research in approximate Bayesian inference aiming to address these limitations. This presentation is a friendly introduction to Probabilistic Programming. We will explore how modern inference methods and recent advances in Differentiable Programming can help us unlock the full potential of Bayesian Machine Learning.

Presentation outline:
- Bayesian Learning and Probabilistic Programs
- Probabilistic Programming in Julia
- Approximate Bayesian Inference
-- Markov Chain Monte Carlo
-- Variational Inference
- Differentiable Programming
- Discussing some examples:
-- Bayesian Deep Learning
-- Bayesian Neural Differential Equations
-- Inverse Optimization

پیشنیاز های علمی:  آمار و احتمال مقدماتی، آشنایی با Deep Learning



🌐 فرم ثبت‌نام

مهلت ثبت‌نام : ۱۵ مهر
🗓 زمان: چهارشنبه ۱۸ مهر - ساعت ۱۶:۰۰
📍مکان: به صورت هیبرید - کلاس ۱۰۹ دانشکده ریاضی


🚀 @Gozar_SUT
🚀 @hamband_sut
Please open Telegram to view this post
VIEW IN TELEGRAM
👏5👍2🙏2👀1



tgoop.com/machinelearningnet2/520
Create:
Last Update:

مجموعه جلسات «گذر»

💠عنوان:
"Probabilistic Programming for Machine Learning"

🎙 ارائه‌دهنده:
امیرعباس اسدی

🔻توضیحات:
Bayesian Learning provides a natural framework for approaching Machine Learning problems. For a long time, due to the significant computational cost of Bayesian inference, this framework was limited to simple models and problems with a small amount of data. Probabilistic Programming is the fruit of many years of research in approximate Bayesian inference aiming to address these limitations. This presentation is a friendly introduction to Probabilistic Programming. We will explore how modern inference methods and recent advances in Differentiable Programming can help us unlock the full potential of Bayesian Machine Learning.

Presentation outline:
- Bayesian Learning and Probabilistic Programs
- Probabilistic Programming in Julia
- Approximate Bayesian Inference
-- Markov Chain Monte Carlo
-- Variational Inference
- Differentiable Programming
- Discussing some examples:
-- Bayesian Deep Learning
-- Bayesian Neural Differential Equations
-- Inverse Optimization

پیشنیاز های علمی:  آمار و احتمال مقدماتی، آشنایی با Deep Learning



🌐 فرم ثبت‌نام

مهلت ثبت‌نام : ۱۵ مهر
🗓 زمان: چهارشنبه ۱۸ مهر - ساعت ۱۶:۰۰
📍مکان: به صورت هیبرید - کلاس ۱۰۹ دانشکده ریاضی


🚀 @Gozar_SUT
🚀 @hamband_sut

BY @machinelearningnet




Share with your friend now:
tgoop.com/machinelearningnet2/520

View MORE
Open in Telegram


Telegram News

Date: |

While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. Co-founder of NFT renting protocol Rentable World emiliano.eth shared the group Tuesday morning on Twitter, calling out the "degenerate" community, or crypto obsessives that engage in high-risk trading. Polls Telegram has announced a number of measures aiming to tackle the spread of disinformation through its platform in Brazil. These features are part of an agreement between the platform and the country's authorities ahead of the elections in October. A vandalised bank during the 2019 protest. File photo: May James/HKFP.
from us


Telegram @machinelearningnet
FROM American