MATLABTIPS Telegram 1661
🔵مدل های انتشار (diffusion models): موتور هوش مصنوعی مدرن! 🔵

تا به امروز حتما شما هم به یکی از کارهای شگفت انگیز تولید تصاویر بسیار با کیفیت توسط هوش مصنوعی برخورد کرده اید! تولید کردن تصاویر با چنین کیفیتی تا حتی چند سال پیش شبیه به رویا بود! اما دلیل این موفقیت شگرف از کجا می آید؟

یکی از مسیر های بسیار معمول مدل سازی های سنتی در هوش مصنوعی که در نهایت به تولد شبکه های عصبی منجر شد از قضا از ترمودینامیک شروع شد! بر خلاف بیشتر آنچه که می خوانید شبکه های عصبی شباهت کمتری به مغز و شباهت بیشتری به یک سیستم ترمودینامیکی مثل یک دسته از مولکول های یک گاز یا کریستال را دارند. در این سیستم ها آنچه بیش از همه اهمیت دارد «انرژی» و «آنتروپی» است. به این مفاهیم برمیگردیم اما قبل از آن باید به بخش جالبی از ترمودینامیک اشاره کنیم که بر اساس مدل سازی پدیده های تصادفی مثل حرکت تصادفی ذرات هوا بر میگردد. این مدل سازی با مقاله ی مهم آینشتین در مورد حرکت براونی در سال ۱۹۰۵ آغاز شد. مطالعات بسیار بر روی این حوزه منجر به ساخت «حساب» (calculus) های جدیدی شد که حرکت های تصادفی را توصیف می کردند. به طور مثال در یک گاز هر مولکول در اثر دو نیرو یعنی حرکت های تصادفی اطراف و حرکت کششی که ناشی از یک میدان خارجی مثل جاذبه است حرکت می کند. معادلاتی که چنین حالاتی را توصیف میکنند به معادلات فوکر پلانک شناخته می شوند. اگر شما یک قطره جوهر را در یک ظرف آب بریزید به مرور زمان منتشر شده و کامل یکنواخت می شود. نتیجه ی این دینامیک همیشه مشخص است: از بین رفتن کامل ساختار اولیه! گویی معادله ی انتشار (diffusion) هر آنچیزی که در طبیعت خراب می شود و از بین میرود را مدل سازی می کند! یک فرم دیگر انتشار معادله ی گرماست که در پست قبلی به آن اشاره کردیم. هر گونه الگوی اولیه در گرما بر روی یک فلز به تدریج یکسان شده و به تعادل می رسد!

این حساب ها به طور واضح فرآیند «از بین رفتن اطلاعات» را توصیف می کنند. در سال ۱۹۸۲ اندرسون در مقاله ای بسیار کلیدی سوال جالبی پرسید؟ اگر انتشار (دیفیوژن) فرآیند از بین رفتن اطلاعات را توصیف می کند و اساسا معادله ای برگشت ناپذیر (irreversible) است چه چیزی آن را برگشت پذیر (reversible) می کند؟

دقت کنید ساده ترین معادله ای برگشت ناپذیر دو حالت را به یک حالت میبرد. به طور مثال اگر من دو تاس را بندازم و عددهای هر دو را با هم جمع کنم و نتیجه را به شما بدهم شما به هیچ وجه نمی توانید عددهای اولیه را پیش بینی کنید. آنچه اما می توانید انجام دهید مجموعه ای از حدس هاست! معادله ی اندرسون به این ترتیب به این سوال پاسخ می دهد که احتمال هر حدس چیست. بعضی ترکیبات دارای احتمال بیشتر و بعضی کمتر هستند. به طور مثال اگر من به شما بگویم که نتیجه ‍۱۲ است شما براحتی می توانید حدس بزنید که دو مقدار اولیه ۶ بودند چون جمع دو تاس تنها در یک حالت می توانند ‍۱۲ باشد! اما این احتمال برای ۷ بسیار پخش تر است چون عدد های اولیه می تواند (۳و ۴) (۴و ۳) (۱و ۶) (۶و ۱) و (۲و ۴) و (۴و۲) باشد. اینجا حدس زدن مرحله ی پیش سخت تر می شود. اما معادله ی پخش این کار را یک بار بلکه بارها انجام میدهد. این من را به یاد بازی ای می اندازد که زمانی که بچه بودیم انجام میدادیم. یک نفر وارد اتاق شده و وسایل درونش را به هم میریزد. کسی که به اتاق بر میگردد باید بر اساس چیزی که یادش است حدس بزند که چی چیزی جابجا شده است! برای انجام این کار شما تنها به حافظه ی چند دقیقه ی پیش خود اکتفا نمیکنید بلکه به تمام حافظه های پیشین در مورد آن اتاق و حتی دانش عمومی در مورد یک اتاق مراجعه می کنید. مثلا به طور معمول لیوان بر روی استکان است و نه برعکس! این فرآیند معکوس اگر درست انجام شود به پیکربندی اصلی اتاق بر میگردد!



tgoop.com/matlabtips/1661
Create:
Last Update:

🔵مدل های انتشار (diffusion models): موتور هوش مصنوعی مدرن! 🔵

تا به امروز حتما شما هم به یکی از کارهای شگفت انگیز تولید تصاویر بسیار با کیفیت توسط هوش مصنوعی برخورد کرده اید! تولید کردن تصاویر با چنین کیفیتی تا حتی چند سال پیش شبیه به رویا بود! اما دلیل این موفقیت شگرف از کجا می آید؟

یکی از مسیر های بسیار معمول مدل سازی های سنتی در هوش مصنوعی که در نهایت به تولد شبکه های عصبی منجر شد از قضا از ترمودینامیک شروع شد! بر خلاف بیشتر آنچه که می خوانید شبکه های عصبی شباهت کمتری به مغز و شباهت بیشتری به یک سیستم ترمودینامیکی مثل یک دسته از مولکول های یک گاز یا کریستال را دارند. در این سیستم ها آنچه بیش از همه اهمیت دارد «انرژی» و «آنتروپی» است. به این مفاهیم برمیگردیم اما قبل از آن باید به بخش جالبی از ترمودینامیک اشاره کنیم که بر اساس مدل سازی پدیده های تصادفی مثل حرکت تصادفی ذرات هوا بر میگردد. این مدل سازی با مقاله ی مهم آینشتین در مورد حرکت براونی در سال ۱۹۰۵ آغاز شد. مطالعات بسیار بر روی این حوزه منجر به ساخت «حساب» (calculus) های جدیدی شد که حرکت های تصادفی را توصیف می کردند. به طور مثال در یک گاز هر مولکول در اثر دو نیرو یعنی حرکت های تصادفی اطراف و حرکت کششی که ناشی از یک میدان خارجی مثل جاذبه است حرکت می کند. معادلاتی که چنین حالاتی را توصیف میکنند به معادلات فوکر پلانک شناخته می شوند. اگر شما یک قطره جوهر را در یک ظرف آب بریزید به مرور زمان منتشر شده و کامل یکنواخت می شود. نتیجه ی این دینامیک همیشه مشخص است: از بین رفتن کامل ساختار اولیه! گویی معادله ی انتشار (diffusion) هر آنچیزی که در طبیعت خراب می شود و از بین میرود را مدل سازی می کند! یک فرم دیگر انتشار معادله ی گرماست که در پست قبلی به آن اشاره کردیم. هر گونه الگوی اولیه در گرما بر روی یک فلز به تدریج یکسان شده و به تعادل می رسد!

این حساب ها به طور واضح فرآیند «از بین رفتن اطلاعات» را توصیف می کنند. در سال ۱۹۸۲ اندرسون در مقاله ای بسیار کلیدی سوال جالبی پرسید؟ اگر انتشار (دیفیوژن) فرآیند از بین رفتن اطلاعات را توصیف می کند و اساسا معادله ای برگشت ناپذیر (irreversible) است چه چیزی آن را برگشت پذیر (reversible) می کند؟

دقت کنید ساده ترین معادله ای برگشت ناپذیر دو حالت را به یک حالت میبرد. به طور مثال اگر من دو تاس را بندازم و عددهای هر دو را با هم جمع کنم و نتیجه را به شما بدهم شما به هیچ وجه نمی توانید عددهای اولیه را پیش بینی کنید. آنچه اما می توانید انجام دهید مجموعه ای از حدس هاست! معادله ی اندرسون به این ترتیب به این سوال پاسخ می دهد که احتمال هر حدس چیست. بعضی ترکیبات دارای احتمال بیشتر و بعضی کمتر هستند. به طور مثال اگر من به شما بگویم که نتیجه ‍۱۲ است شما براحتی می توانید حدس بزنید که دو مقدار اولیه ۶ بودند چون جمع دو تاس تنها در یک حالت می توانند ‍۱۲ باشد! اما این احتمال برای ۷ بسیار پخش تر است چون عدد های اولیه می تواند (۳و ۴) (۴و ۳) (۱و ۶) (۶و ۱) و (۲و ۴) و (۴و۲) باشد. اینجا حدس زدن مرحله ی پیش سخت تر می شود. اما معادله ی پخش این کار را یک بار بلکه بارها انجام میدهد. این من را به یاد بازی ای می اندازد که زمانی که بچه بودیم انجام میدادیم. یک نفر وارد اتاق شده و وسایل درونش را به هم میریزد. کسی که به اتاق بر میگردد باید بر اساس چیزی که یادش است حدس بزند که چی چیزی جابجا شده است! برای انجام این کار شما تنها به حافظه ی چند دقیقه ی پیش خود اکتفا نمیکنید بلکه به تمام حافظه های پیشین در مورد آن اتاق و حتی دانش عمومی در مورد یک اتاق مراجعه می کنید. مثلا به طور معمول لیوان بر روی استکان است و نه برعکس! این فرآیند معکوس اگر درست انجام شود به پیکربندی اصلی اتاق بر میگردد!

BY MatlabTips


Share with your friend now:
tgoop.com/matlabtips/1661

View MORE
Open in Telegram


Telegram News

Date: |

Telegram users themselves will be able to flag and report potentially false content. 6How to manage your Telegram channel? Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.” Choose quality over quantity. Remember that one high-quality post is better than five short publications of questionable value.
from us


Telegram MatlabTips
FROM American